clippy 0.0.41

A bunch of helpful lints to avoid common pitfalls in Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
use rustc::lint::*;
use syntax::ptr::P;
use rustc_front::hir::*;
use reexport::*;
use rustc_front::util::{is_comparison_binop, binop_to_string};
use syntax::codemap::{Span, Spanned, ExpnFormat};
use rustc_front::intravisit::FnKind;
use rustc::middle::ty;
use rustc::middle::const_eval::ConstVal::Float;
use rustc::middle::const_eval::eval_const_expr_partial;
use rustc::middle::const_eval::EvalHint::ExprTypeChecked;

use utils::{get_item_name, match_path, snippet, get_parent_expr, span_lint};
use utils::{span_lint_and_then, walk_ptrs_ty, is_integer_literal, implements_trait};

/// **What it does:** This lint checks for function arguments and let bindings denoted as `ref`.
///
/// **Why is this bad?** The `ref` declaration makes the function take an owned value, but turns the argument into a reference (which means that the value is destroyed when exiting the function). This adds not much value: either take a reference type, or take an owned value and create references in the body.
///
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The type of `x` is more obvious with the former.
///
/// **Known problems:** If the argument is dereferenced within the function, removing the `ref` will lead to errors. This can be fixed by removing the dereferences, e.g. changing `*x` to `x` within the function.
///
/// **Example:** `fn foo(ref x: u8) -> bool { .. }`
declare_lint! {
    pub TOPLEVEL_REF_ARG, Warn,
    "An entire binding was declared as `ref`, in a function argument (`fn foo(ref x: Bar)`), \
     or a `let` statement (`let ref x = foo()`). In such cases, it is preferred to take \
     references with `&`."
}

#[allow(missing_copy_implementations)]
pub struct TopLevelRefPass;

impl LintPass for TopLevelRefPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(TOPLEVEL_REF_ARG)
    }
}

impl LateLintPass for TopLevelRefPass {
    fn check_fn(&mut self, cx: &LateContext, k: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) {
        if let FnKind::Closure = k {
            // Does not apply to closures
            return;
        }
        for ref arg in &decl.inputs {
            if let PatIdent(BindByRef(_), _, _) = arg.pat.node {
                span_lint(cx,
                          TOPLEVEL_REF_ARG,
                          arg.pat.span,
                          "`ref` directly on a function argument is ignored. Consider using a reference type instead.");
            }
        }
    }
    fn check_stmt(&mut self, cx: &LateContext, s: &Stmt) {
        if_let_chain! {
            [
            let StmtDecl(ref d, _) = s.node,
            let DeclLocal(ref l) = d.node,
            let PatIdent(BindByRef(_), i, None) = l.pat.node,
            let Some(ref init) = l.init
            ], {
                let tyopt = if let Some(ref ty) = l.ty {
                    format!(": {}", snippet(cx, ty.span, "_"))
                } else {
                    "".to_owned()
                };
                span_lint_and_then(cx,
                    TOPLEVEL_REF_ARG,
                    l.pat.span,
                    "`ref` on an entire `let` pattern is discouraged, take a reference with & instead",
                    |db| {
                        db.span_suggestion(s.span,
                                           "try",
                                           format!("let {}{} = &{};",
                                                   snippet(cx, i.span, "_"),
                                                   tyopt,
                                                   snippet(cx, init.span, "_")));
                    }
                );
            }
        };
    }
}

/// **What it does:** This lint checks for comparisons to NAN.
///
/// **Why is this bad?** NAN does not compare meaningfully to anything – not even itself – so those comparisons are simply wrong.
///
/// **Known problems:** None
///
/// **Example:** `x == NAN`
declare_lint!(pub CMP_NAN, Deny,
              "comparisons to NAN (which will always return false, which is probably not intended)");

#[derive(Copy,Clone)]
pub struct CmpNan;

impl LintPass for CmpNan {
    fn get_lints(&self) -> LintArray {
        lint_array!(CMP_NAN)
    }
}

impl LateLintPass for CmpNan {
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
            if is_comparison_binop(cmp.node) {
                if let ExprPath(_, ref path) = left.node {
                    check_nan(cx, path, expr.span);
                }
                if let ExprPath(_, ref path) = right.node {
                    check_nan(cx, path, expr.span);
                }
            }
        }
    }
}

fn check_nan(cx: &LateContext, path: &Path, span: Span) {
    path.segments.last().map(|seg| {
        if seg.identifier.name.as_str() == "NAN" {
            span_lint(cx,
                      CMP_NAN,
                      span,
                      "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead");
        }
    });
}

/// **What it does:** This lint checks for (in-)equality comparisons on floating-point values (apart from zero), except in functions called `*eq*` (which probably implement equality for a type involving floats).
///
/// **Why is this bad?** Floating point calculations are usually imprecise, so asking if two values are *exactly* equal is asking for trouble. For a good guide on what to do, see [the floating point guide](http://www.floating-point-gui.de/errors/comparison).
///
/// **Known problems:** None
///
/// **Example:** `y == 1.23f64`
declare_lint!(pub FLOAT_CMP, Warn,
              "using `==` or `!=` on float values (as floating-point operations \
               usually involve rounding errors, it is always better to check for approximate \
               equality within small bounds)");

#[derive(Copy,Clone)]
pub struct FloatCmp;

impl LintPass for FloatCmp {
    fn get_lints(&self) -> LintArray {
        lint_array!(FLOAT_CMP)
    }
}

impl LateLintPass for FloatCmp {
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
            let op = cmp.node;
            if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) {
                if is_allowed(cx, left) || is_allowed(cx, right) {
                    return;
                }
                if let Some(name) = get_item_name(cx, expr) {
                    let name = name.as_str();
                    if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") ||
                       name.ends_with("_eq") {
                        return;
                    }
                }
                span_lint(cx,
                          FLOAT_CMP,
                          expr.span,
                          &format!("{}-comparison of f32 or f64 detected. Consider changing this to `abs({} - {}) < \
                                    epsilon` for some suitable value of epsilon",
                                   binop_to_string(op),
                                   snippet(cx, left.span, ".."),
                                   snippet(cx, right.span, "..")));
            }
        }
    }
}

fn is_allowed(cx: &LateContext, expr: &Expr) -> bool {
    let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None);
    if let Ok(Float(val)) = res {
        val == 0.0 || val == ::std::f64::INFINITY || val == ::std::f64::NEG_INFINITY
    } else {
        false
    }
}

fn is_float(cx: &LateContext, expr: &Expr) -> bool {
    if let ty::TyFloat(_) = walk_ptrs_ty(cx.tcx.expr_ty(expr)).sty {
        true
    } else {
        false
    }
}

/// **What it does:** This lint checks for conversions to owned values just for the sake of a comparison.
///
/// **Why is this bad?** The comparison can operate on a reference, so creating an owned value effectively throws it away directly afterwards, which is needlessly consuming code and heap space.
///
/// **Known problems:** None
///
/// **Example:** `x.to_owned() == y`
declare_lint!(pub CMP_OWNED, Warn,
              "creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`");

#[derive(Copy,Clone)]
pub struct CmpOwned;

impl LintPass for CmpOwned {
    fn get_lints(&self) -> LintArray {
        lint_array!(CMP_OWNED)
    }
}

impl LateLintPass for CmpOwned {
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
            if is_comparison_binop(cmp.node) {
                check_to_owned(cx, left, right, true, cmp.span);
                check_to_owned(cx, right, left, false, cmp.span)
            }
        }
    }
}

fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr, left: bool, op: Span) {
    let (arg_ty, snip) = match expr.node {
        ExprMethodCall(Spanned{node: ref name, ..}, _, ref args) if args.len() == 1 => {
            if name.as_str() == "to_string" || name.as_str() == "to_owned" && is_str_arg(cx, args) {
                (cx.tcx.expr_ty(&args[0]), snippet(cx, args[0].span, ".."))
            } else {
                return;
            }
        }
        ExprCall(ref path, ref v) if v.len() == 1 => {
            if let ExprPath(None, ref path) = path.node {
                if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) {
                    (cx.tcx.expr_ty(&v[0]), snippet(cx, v[0].span, ".."))
                } else {
                    return;
                }
            } else {
                return;
            }
        }
        _ => return,
    };

    let other_ty = cx.tcx.expr_ty(other);
    let partial_eq_trait_id = match cx.tcx.lang_items.eq_trait() {
        Some(id) => id,
        None => return,
    };

    if !implements_trait(cx, arg_ty, partial_eq_trait_id, Some(vec![other_ty])) {
        return;
    }

    if left {
        span_lint(cx,
                  CMP_OWNED,
                  expr.span,
                  &format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
                            compare without allocation",
                           snip,
                           snippet(cx, op, "=="),
                           snippet(cx, other.span, "..")));
    } else {
        span_lint(cx,
                  CMP_OWNED,
                  expr.span,
                  &format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
                            compare without allocation",
                           snippet(cx, other.span, ".."),
                           snippet(cx, op, "=="),
                           snip));
    }

}

fn is_str_arg(cx: &LateContext, args: &[P<Expr>]) -> bool {
    args.len() == 1 &&
    if let ty::TyStr = walk_ptrs_ty(cx.tcx.expr_ty(&args[0])).sty {
        true
    } else {
        false
    }
}

/// **What it does:** This lint checks for getting the remainder of a division by one.
///
/// **Why is this bad?** The result can only ever be zero. No one will write such code deliberately, unless trying to win an Underhanded Rust Contest. Even for that contest, it's probably a bad idea. Use something more underhanded.
///
/// **Known problems:** None
///
/// **Example:** `x % 1`
declare_lint!(pub MODULO_ONE, Warn, "taking a number modulo 1, which always returns 0");

#[derive(Copy,Clone)]
pub struct ModuloOne;

impl LintPass for ModuloOne {
    fn get_lints(&self) -> LintArray {
        lint_array!(MODULO_ONE)
    }
}

impl LateLintPass for ModuloOne {
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if let ExprBinary(ref cmp, _, ref right) = expr.node {
            if let Spanned {node: BinOp_::BiRem, ..} = *cmp {
                if is_integer_literal(right, 1) {
                    cx.span_lint(MODULO_ONE, expr.span, "any number modulo 1 will be 0");
                }
            }
        }
    }
}

/// **What it does:** This lint checks for patterns in the form `name @ _`.
///
/// **Why is this bad?** It's almost always more readable to just use direct bindings.
///
/// **Known problems:** None
///
/// **Example**:
/// ```
/// match v {
///     Some(x) => (),
///     y @ _   => (), // easier written as `y`,
/// }
/// ```
declare_lint!(pub REDUNDANT_PATTERN, Warn, "using `name @ _` in a pattern");

#[derive(Copy,Clone)]
pub struct PatternPass;

impl LintPass for PatternPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(REDUNDANT_PATTERN)
    }
}

impl LateLintPass for PatternPass {
    fn check_pat(&mut self, cx: &LateContext, pat: &Pat) {
        if let PatIdent(_, ref ident, Some(ref right)) = pat.node {
            if right.node == PatWild {
                cx.span_lint(REDUNDANT_PATTERN,
                             pat.span,
                             &format!("the `{} @ _` pattern can be written as just `{}`",
                                      ident.node.name,
                                      ident.node.name));
            }
        }
    }
}


/// **What it does:** This lint checks for the use of bindings with a single leading underscore
///
/// **Why is this bad?** A single leading underscore is usually used to indicate that a binding
/// will not be used. Using such a binding breaks this expectation.
///
/// **Known problems:** None
///
/// **Example**:
/// ```
/// let _x = 0;
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading underscore.
///                 // We should rename `_x` to `x`
/// ```
declare_lint!(pub USED_UNDERSCORE_BINDING, Warn,
              "using a binding which is prefixed with an underscore");

#[derive(Copy, Clone)]
pub struct UsedUnderscoreBinding;

impl LintPass for UsedUnderscoreBinding {
    fn get_lints(&self) -> LintArray {
        lint_array!(USED_UNDERSCORE_BINDING)
    }
}

impl LateLintPass for UsedUnderscoreBinding {
    #[cfg_attr(rustfmt, rustfmt_skip)]
    fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
        if in_attributes_expansion(cx, expr) {
    // Don't lint things expanded by #[derive(...)], etc
            return;
        }
        let needs_lint = match expr.node {
            ExprPath(_, ref path) => {
                let ident = path.segments
                                .last()
                                .expect("path should always have at least one segment")
                                .identifier;
                ident.name.as_str().starts_with('_') &&
                !ident.name.as_str().starts_with("__") &&
                ident.name != ident.unhygienic_name &&
                is_used(cx, expr) // not in bang macro
            }
            ExprField(_, spanned) => {
                let name = spanned.node.as_str();
                name.starts_with('_') && !name.starts_with("__")
            }
            _ => false,
        };
        if needs_lint {
            cx.span_lint(USED_UNDERSCORE_BINDING,
                         expr.span,
                         "used binding which is prefixed with an underscore. A leading underscore signals that a \
                          binding will not be used.");
        }
    }
}

/// Heuristic to see if an expression is used. Should be compatible with `unused_variables`'s idea
/// of what it means for an expression to be "used".
fn is_used(cx: &LateContext, expr: &Expr) -> bool {
    if let Some(ref parent) = get_parent_expr(cx, expr) {
        match parent.node {
            ExprAssign(_, ref rhs) | ExprAssignOp(_, _, ref rhs) => **rhs == *expr,
            _ => is_used(cx, &parent),
        }
    } else {
        true
    }
}

/// Test whether an expression is in a macro expansion (e.g. something generated by #[derive(...)]
/// or the like)
fn in_attributes_expansion(cx: &LateContext, expr: &Expr) -> bool {
    cx.sess().codemap().with_expn_info(expr.span.expn_id, |info_opt| {
        info_opt.map_or(false, |info| {
            match info.callee.format {
                ExpnFormat::MacroAttribute(_) => true,
                _ => false,
            }
        })
    })
}