use rustc::lint::*;
use syntax::ptr::P;
use rustc_front::hir::*;
use reexport::*;
use rustc_front::util::{is_comparison_binop, binop_to_string};
use syntax::codemap::{Span, Spanned, ExpnFormat};
use rustc_front::intravisit::FnKind;
use rustc::middle::ty;
use rustc::middle::const_eval::ConstVal::Float;
use rustc::middle::const_eval::eval_const_expr_partial;
use rustc::middle::const_eval::EvalHint::ExprTypeChecked;
use utils::{get_item_name, match_path, snippet, get_parent_expr, span_lint};
use utils::{span_lint_and_then, walk_ptrs_ty, is_integer_literal, implements_trait};
declare_lint! {
pub TOPLEVEL_REF_ARG, Warn,
"An entire binding was declared as `ref`, in a function argument (`fn foo(ref x: Bar)`), \
or a `let` statement (`let ref x = foo()`). In such cases, it is preferred to take \
references with `&`."
}
#[allow(missing_copy_implementations)]
pub struct TopLevelRefPass;
impl LintPass for TopLevelRefPass {
fn get_lints(&self) -> LintArray {
lint_array!(TOPLEVEL_REF_ARG)
}
}
impl LateLintPass for TopLevelRefPass {
fn check_fn(&mut self, cx: &LateContext, k: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) {
if let FnKind::Closure = k {
return;
}
for ref arg in &decl.inputs {
if let PatIdent(BindByRef(_), _, _) = arg.pat.node {
span_lint(cx,
TOPLEVEL_REF_ARG,
arg.pat.span,
"`ref` directly on a function argument is ignored. Consider using a reference type instead.");
}
}
}
fn check_stmt(&mut self, cx: &LateContext, s: &Stmt) {
if_let_chain! {
[
let StmtDecl(ref d, _) = s.node,
let DeclLocal(ref l) = d.node,
let PatIdent(BindByRef(_), i, None) = l.pat.node,
let Some(ref init) = l.init
], {
let tyopt = if let Some(ref ty) = l.ty {
format!(": {}", snippet(cx, ty.span, "_"))
} else {
"".to_owned()
};
span_lint_and_then(cx,
TOPLEVEL_REF_ARG,
l.pat.span,
"`ref` on an entire `let` pattern is discouraged, take a reference with & instead",
|db| {
db.span_suggestion(s.span,
"try",
format!("let {}{} = &{};",
snippet(cx, i.span, "_"),
tyopt,
snippet(cx, init.span, "_")));
}
);
}
};
}
}
declare_lint!(pub CMP_NAN, Deny,
"comparisons to NAN (which will always return false, which is probably not intended)");
#[derive(Copy,Clone)]
pub struct CmpNan;
impl LintPass for CmpNan {
fn get_lints(&self) -> LintArray {
lint_array!(CMP_NAN)
}
}
impl LateLintPass for CmpNan {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
if is_comparison_binop(cmp.node) {
if let ExprPath(_, ref path) = left.node {
check_nan(cx, path, expr.span);
}
if let ExprPath(_, ref path) = right.node {
check_nan(cx, path, expr.span);
}
}
}
}
}
fn check_nan(cx: &LateContext, path: &Path, span: Span) {
path.segments.last().map(|seg| {
if seg.identifier.name.as_str() == "NAN" {
span_lint(cx,
CMP_NAN,
span,
"doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead");
}
});
}
declare_lint!(pub FLOAT_CMP, Warn,
"using `==` or `!=` on float values (as floating-point operations \
usually involve rounding errors, it is always better to check for approximate \
equality within small bounds)");
#[derive(Copy,Clone)]
pub struct FloatCmp;
impl LintPass for FloatCmp {
fn get_lints(&self) -> LintArray {
lint_array!(FLOAT_CMP)
}
}
impl LateLintPass for FloatCmp {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
let op = cmp.node;
if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) {
if is_allowed(cx, left) || is_allowed(cx, right) {
return;
}
if let Some(name) = get_item_name(cx, expr) {
let name = name.as_str();
if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") ||
name.ends_with("_eq") {
return;
}
}
span_lint(cx,
FLOAT_CMP,
expr.span,
&format!("{}-comparison of f32 or f64 detected. Consider changing this to `abs({} - {}) < \
epsilon` for some suitable value of epsilon",
binop_to_string(op),
snippet(cx, left.span, ".."),
snippet(cx, right.span, "..")));
}
}
}
}
fn is_allowed(cx: &LateContext, expr: &Expr) -> bool {
let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None);
if let Ok(Float(val)) = res {
val == 0.0 || val == ::std::f64::INFINITY || val == ::std::f64::NEG_INFINITY
} else {
false
}
}
fn is_float(cx: &LateContext, expr: &Expr) -> bool {
if let ty::TyFloat(_) = walk_ptrs_ty(cx.tcx.expr_ty(expr)).sty {
true
} else {
false
}
}
declare_lint!(pub CMP_OWNED, Warn,
"creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`");
#[derive(Copy,Clone)]
pub struct CmpOwned;
impl LintPass for CmpOwned {
fn get_lints(&self) -> LintArray {
lint_array!(CMP_OWNED)
}
}
impl LateLintPass for CmpOwned {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
if is_comparison_binop(cmp.node) {
check_to_owned(cx, left, right, true, cmp.span);
check_to_owned(cx, right, left, false, cmp.span)
}
}
}
}
fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr, left: bool, op: Span) {
let (arg_ty, snip) = match expr.node {
ExprMethodCall(Spanned{node: ref name, ..}, _, ref args) if args.len() == 1 => {
if name.as_str() == "to_string" || name.as_str() == "to_owned" && is_str_arg(cx, args) {
(cx.tcx.expr_ty(&args[0]), snippet(cx, args[0].span, ".."))
} else {
return;
}
}
ExprCall(ref path, ref v) if v.len() == 1 => {
if let ExprPath(None, ref path) = path.node {
if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) {
(cx.tcx.expr_ty(&v[0]), snippet(cx, v[0].span, ".."))
} else {
return;
}
} else {
return;
}
}
_ => return,
};
let other_ty = cx.tcx.expr_ty(other);
let partial_eq_trait_id = match cx.tcx.lang_items.eq_trait() {
Some(id) => id,
None => return,
};
if !implements_trait(cx, arg_ty, partial_eq_trait_id, Some(vec![other_ty])) {
return;
}
if left {
span_lint(cx,
CMP_OWNED,
expr.span,
&format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
compare without allocation",
snip,
snippet(cx, op, "=="),
snippet(cx, other.span, "..")));
} else {
span_lint(cx,
CMP_OWNED,
expr.span,
&format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
compare without allocation",
snippet(cx, other.span, ".."),
snippet(cx, op, "=="),
snip));
}
}
fn is_str_arg(cx: &LateContext, args: &[P<Expr>]) -> bool {
args.len() == 1 &&
if let ty::TyStr = walk_ptrs_ty(cx.tcx.expr_ty(&args[0])).sty {
true
} else {
false
}
}
declare_lint!(pub MODULO_ONE, Warn, "taking a number modulo 1, which always returns 0");
#[derive(Copy,Clone)]
pub struct ModuloOne;
impl LintPass for ModuloOne {
fn get_lints(&self) -> LintArray {
lint_array!(MODULO_ONE)
}
}
impl LateLintPass for ModuloOne {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, _, ref right) = expr.node {
if let Spanned {node: BinOp_::BiRem, ..} = *cmp {
if is_integer_literal(right, 1) {
cx.span_lint(MODULO_ONE, expr.span, "any number modulo 1 will be 0");
}
}
}
}
}
declare_lint!(pub REDUNDANT_PATTERN, Warn, "using `name @ _` in a pattern");
#[derive(Copy,Clone)]
pub struct PatternPass;
impl LintPass for PatternPass {
fn get_lints(&self) -> LintArray {
lint_array!(REDUNDANT_PATTERN)
}
}
impl LateLintPass for PatternPass {
fn check_pat(&mut self, cx: &LateContext, pat: &Pat) {
if let PatIdent(_, ref ident, Some(ref right)) = pat.node {
if right.node == PatWild {
cx.span_lint(REDUNDANT_PATTERN,
pat.span,
&format!("the `{} @ _` pattern can be written as just `{}`",
ident.node.name,
ident.node.name));
}
}
}
}
declare_lint!(pub USED_UNDERSCORE_BINDING, Warn,
"using a binding which is prefixed with an underscore");
#[derive(Copy, Clone)]
pub struct UsedUnderscoreBinding;
impl LintPass for UsedUnderscoreBinding {
fn get_lints(&self) -> LintArray {
lint_array!(USED_UNDERSCORE_BINDING)
}
}
impl LateLintPass for UsedUnderscoreBinding {
#[cfg_attr(rustfmt, rustfmt_skip)]
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if in_attributes_expansion(cx, expr) {
return;
}
let needs_lint = match expr.node {
ExprPath(_, ref path) => {
let ident = path.segments
.last()
.expect("path should always have at least one segment")
.identifier;
ident.name.as_str().starts_with('_') &&
!ident.name.as_str().starts_with("__") &&
ident.name != ident.unhygienic_name &&
is_used(cx, expr) }
ExprField(_, spanned) => {
let name = spanned.node.as_str();
name.starts_with('_') && !name.starts_with("__")
}
_ => false,
};
if needs_lint {
cx.span_lint(USED_UNDERSCORE_BINDING,
expr.span,
"used binding which is prefixed with an underscore. A leading underscore signals that a \
binding will not be used.");
}
}
}
fn is_used(cx: &LateContext, expr: &Expr) -> bool {
if let Some(ref parent) = get_parent_expr(cx, expr) {
match parent.node {
ExprAssign(_, ref rhs) | ExprAssignOp(_, _, ref rhs) => **rhs == *expr,
_ => is_used(cx, &parent),
}
} else {
true
}
}
fn in_attributes_expansion(cx: &LateContext, expr: &Expr) -> bool {
cx.sess().codemap().with_expn_info(expr.span.expn_id, |info_opt| {
info_opt.map_or(false, |info| {
match info.callee.format {
ExpnFormat::MacroAttribute(_) => true,
_ => false,
}
})
})
}