cc13x2-cc26x2-pac 0.1.0

Peripheral access API for cc13x2 and cc26x2 microcontrollers
Documentation
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::STCR {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct NOREFR {
    bits: bool,
}
impl NOREFR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct SKEWR {
    bits: bool,
}
impl SKEWR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED24R {
    bits: u8,
}
impl RESERVED24R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct TENMSR {
    bits: u32,
}
impl TENMSR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
}
#[doc = r" Proxy"]
pub struct _NOREFW<'a> {
    w: &'a mut W,
}
impl<'a> _NOREFW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 31;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _SKEWW<'a> {
    w: &'a mut W,
}
impl<'a> _SKEWW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 30;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED24W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED24W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 63;
        const OFFSET: u8 = 24;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _TENMSW<'a> {
    w: &'a mut W,
}
impl<'a> _TENMSW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        const MASK: u32 = 16777215;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 31 - 31:31\\] Reads as one. Indicates that no separate reference clock is provided."]
    #[inline]
    pub fn noref(&self) -> NOREFR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 31;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        NOREFR { bits }
    }
    #[doc = "Bit 30 - 30:30\\] Reads as one. The calibration value is not exactly 10ms because of clock frequency. This could affect its suitability as a software real time clock."]
    #[inline]
    pub fn skew(&self) -> SKEWR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 30;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SKEWR { bits }
    }
    #[doc = "Bits 24:29 - 29:24\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved24(&self) -> RESERVED24R {
        let bits = {
            const MASK: u8 = 63;
            const OFFSET: u8 = 24;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED24R { bits }
    }
    #[doc = "Bits 0:23 - 23:0\\] An optional Reload value to be used for 10ms (100Hz) timing, subject to system clock skew errors. The value read is valid only when core clock is at 48MHz."]
    #[inline]
    pub fn tenms(&self) -> TENMSR {
        let bits = {
            const MASK: u32 = 16777215;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) as u32
        };
        TENMSR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 3221705472 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 31 - 31:31\\] Reads as one. Indicates that no separate reference clock is provided."]
    #[inline]
    pub fn noref(&mut self) -> _NOREFW {
        _NOREFW { w: self }
    }
    #[doc = "Bit 30 - 30:30\\] Reads as one. The calibration value is not exactly 10ms because of clock frequency. This could affect its suitability as a software real time clock."]
    #[inline]
    pub fn skew(&mut self) -> _SKEWW {
        _SKEWW { w: self }
    }
    #[doc = "Bits 24:29 - 29:24\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved24(&mut self) -> _RESERVED24W {
        _RESERVED24W { w: self }
    }
    #[doc = "Bits 0:23 - 23:0\\] An optional Reload value to be used for 10ms (100Hz) timing, subject to system clock skew errors. The value read is valid only when core clock is at 48MHz."]
    #[inline]
    pub fn tenms(&mut self) -> _TENMSW {
        _TENMSW { w: self }
    }
}