#[doc = r" Value read from the register"]
pub struct R {
bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
bits: u32,
}
impl super::FPCCR {
#[doc = r" Modifies the contents of the register"]
#[inline]
pub fn modify<F>(&self, f: F)
where
for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
{
let bits = self.register.get();
let r = R { bits: bits };
let mut w = W { bits: bits };
f(&r, &mut w);
self.register.set(w.bits);
}
#[doc = r" Reads the contents of the register"]
#[inline]
pub fn read(&self) -> R {
R {
bits: self.register.get(),
}
}
#[doc = r" Writes to the register"]
#[inline]
pub fn write<F>(&self, f: F)
where
F: FnOnce(&mut W) -> &mut W,
{
let mut w = W::reset_value();
f(&mut w);
self.register.set(w.bits);
}
#[doc = r" Writes the reset value to the register"]
#[inline]
pub fn reset(&self) {
self.write(|w| w)
}
}
#[doc = r" Value of the field"]
pub struct ASPENR {
bits: bool,
}
impl ASPENR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct LSPENR {
bits: bool,
}
impl LSPENR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RESERVED9R {
bits: u32,
}
impl RESERVED9R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u32 {
self.bits
}
}
#[doc = r" Value of the field"]
pub struct MONRDYR {
bits: bool,
}
impl MONRDYR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RESERVED7R {
bits: bool,
}
impl RESERVED7R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct BFRDYR {
bits: bool,
}
impl BFRDYR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct MMRDYR {
bits: bool,
}
impl MMRDYR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct HFRDYR {
bits: bool,
}
impl HFRDYR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct THREADR {
bits: bool,
}
impl THREADR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RESERVED2R {
bits: bool,
}
impl RESERVED2R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct USERR {
bits: bool,
}
impl USERR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct LSPACTR {
bits: bool,
}
impl LSPACTR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Proxy"]
pub struct _ASPENW<'a> {
w: &'a mut W,
}
impl<'a> _ASPENW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 31;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _LSPENW<'a> {
w: &'a mut W,
}
impl<'a> _LSPENW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 30;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED9W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED9W<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u32) -> &'a mut W {
const MASK: u32 = 2097151;
const OFFSET: u8 = 9;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _MONRDYW<'a> {
w: &'a mut W,
}
impl<'a> _MONRDYW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 8;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED7W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED7W<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 7;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _BFRDYW<'a> {
w: &'a mut W,
}
impl<'a> _BFRDYW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 6;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _MMRDYW<'a> {
w: &'a mut W,
}
impl<'a> _MMRDYW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 5;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _HFRDYW<'a> {
w: &'a mut W,
}
impl<'a> _HFRDYW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 4;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _THREADW<'a> {
w: &'a mut W,
}
impl<'a> _THREADW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 3;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED2W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED2W<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 2;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _USERW<'a> {
w: &'a mut W,
}
impl<'a> _USERW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 1;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _LSPACTW<'a> {
w: &'a mut W,
}
impl<'a> _LSPACTW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 0;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
impl R {
#[doc = r" Value of the register as raw bits"]
#[inline]
pub fn bits(&self) -> u32 {
self.bits
}
#[doc = "Bit 31 - 31:31\\] Automatic State Preservation enable. When this bit is set is will cause bit \\[2\\] of the Special CONTROL register to be set (FPCA) on execution of a floating point instruction which results in the floating point state automatically being preserved on exception entry."]
#[inline]
pub fn aspen(&self) -> ASPENR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 31;
((self.bits >> OFFSET) & MASK as u32) != 0
};
ASPENR { bits }
}
#[doc = "Bit 30 - 30:30\\] Lazy State Preservation enable. Lazy state preservation is when the processor performs a context save, space on the stack is reserved for the floating point state but it is not stacked until the new context performs a floating point operation. 0: Disable automatic lazy state preservation for floating-point context. 1: Enable automatic lazy state preservation for floating-point context."]
#[inline]
pub fn lspen(&self) -> LSPENR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 30;
((self.bits >> OFFSET) & MASK as u32) != 0
};
LSPENR { bits }
}
#[doc = "Bits 9:29 - 29:9\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved9(&self) -> RESERVED9R {
let bits = {
const MASK: u32 = 2097151;
const OFFSET: u8 = 9;
((self.bits >> OFFSET) & MASK as u32) as u32
};
RESERVED9R { bits }
}
#[doc = "Bit 8 - 8:8\\] Indicates whether the the software executing when the processor allocated the FP stack frame was able to set the DebugMonitor exception to pending. 0: DebugMonitor is disabled or priority did not permit setting DEMCR.MON_PEND when the floating-point stack frame was allocated. 1: DebugMonitor is enabled and priority permits setting DEMCR.MON_PEND when the floating-point stack frame was allocated."]
#[inline]
pub fn monrdy(&self) -> MONRDYR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 8;
((self.bits >> OFFSET) & MASK as u32) != 0
};
MONRDYR { bits }
}
#[doc = "Bit 7 - 7:7\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved7(&self) -> RESERVED7R {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 7;
((self.bits >> OFFSET) & MASK as u32) != 0
};
RESERVED7R { bits }
}
#[doc = "Bit 6 - 6:6\\] Indicates whether the software executing when the processor allocated the FP stack frame was able to set the BusFault exception to pending. 0: BusFault is disabled or priority did not permit setting the BusFault handler to the pending state when the floating-point stack frame was allocated. 1: BusFault is enabled and priority permitted setting the BusFault handler to the pending state when the floating-point stack frame was allocated."]
#[inline]
pub fn bfrdy(&self) -> BFRDYR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 6;
((self.bits >> OFFSET) & MASK as u32) != 0
};
BFRDYR { bits }
}
#[doc = "Bit 5 - 5:5\\] Indicates whether the software executing when the processor allocated the FP stack frame was able to set the MemManage exception to pending. 0: MemManage is disabled or priority did not permit setting the MemManage handler to the pending state when the floating-point stack frame was allocated. 1: MemManage is enabled and priority permitted setting the MemManage handler to the pending state when the floating-point stack frame was allocated."]
#[inline]
pub fn mmrdy(&self) -> MMRDYR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 5;
((self.bits >> OFFSET) & MASK as u32) != 0
};
MMRDYR { bits }
}
#[doc = "Bit 4 - 4:4\\] Indicates whether the software executing when the processor allocated the FP stack frame was able to set the HardFault exception to pending. 0: Priority did not permit setting the HardFault handler to the pending state when the floating-point stack frame was allocated. 1: Priority permitted setting the HardFault handler to the pending state when the floating-point stack frame was allocated."]
#[inline]
pub fn hfrdy(&self) -> HFRDYR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 4;
((self.bits >> OFFSET) & MASK as u32) != 0
};
HFRDYR { bits }
}
#[doc = "Bit 3 - 3:3\\] Indicates the processor mode was Thread when it allocated the FP stack frame. 0: Mode was not Thread Mode when the floating-point stack frame was allocated. 1: Mode was Thread Mode when the floating-point stack frame was allocated."]
#[inline]
pub fn thread(&self) -> THREADR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 3;
((self.bits >> OFFSET) & MASK as u32) != 0
};
THREADR { bits }
}
#[doc = "Bit 2 - 2:2\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved2(&self) -> RESERVED2R {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 2;
((self.bits >> OFFSET) & MASK as u32) != 0
};
RESERVED2R { bits }
}
#[doc = "Bit 1 - 1:1\\] Indicates the privilege level of the software executing was User (Unpriviledged) when the processor allocated the FP stack frame: 0: Privilege level was not user when the floating-point stack frame was allocated. 1: Privilege level was user when the floating-point stack frame was allocated."]
#[inline]
pub fn user(&self) -> USERR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 1;
((self.bits >> OFFSET) & MASK as u32) != 0
};
USERR { bits }
}
#[doc = "Bit 0 - 0:0\\] Indicates whether Lazy preservation of the FP state is active: 0: Lazy state preservation is not active. 1: Lazy state preservation is active. floating-point stack frame has been allocated but saving state to it has been deferred."]
#[inline]
pub fn lspact(&self) -> LSPACTR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 0;
((self.bits >> OFFSET) & MASK as u32) != 0
};
LSPACTR { bits }
}
}
impl W {
#[doc = r" Reset value of the register"]
#[inline]
pub fn reset_value() -> W {
W { bits: 3221225472 }
}
#[doc = r" Writes raw bits to the register"]
#[inline]
pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
self.bits = bits;
self
}
#[doc = "Bit 31 - 31:31\\] Automatic State Preservation enable. When this bit is set is will cause bit \\[2\\] of the Special CONTROL register to be set (FPCA) on execution of a floating point instruction which results in the floating point state automatically being preserved on exception entry."]
#[inline]
pub fn aspen(&mut self) -> _ASPENW {
_ASPENW { w: self }
}
#[doc = "Bit 30 - 30:30\\] Lazy State Preservation enable. Lazy state preservation is when the processor performs a context save, space on the stack is reserved for the floating point state but it is not stacked until the new context performs a floating point operation. 0: Disable automatic lazy state preservation for floating-point context. 1: Enable automatic lazy state preservation for floating-point context."]
#[inline]
pub fn lspen(&mut self) -> _LSPENW {
_LSPENW { w: self }
}
#[doc = "Bits 9:29 - 29:9\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved9(&mut self) -> _RESERVED9W {
_RESERVED9W { w: self }
}
#[doc = "Bit 8 - 8:8\\] Indicates whether the the software executing when the processor allocated the FP stack frame was able to set the DebugMonitor exception to pending. 0: DebugMonitor is disabled or priority did not permit setting DEMCR.MON_PEND when the floating-point stack frame was allocated. 1: DebugMonitor is enabled and priority permits setting DEMCR.MON_PEND when the floating-point stack frame was allocated."]
#[inline]
pub fn monrdy(&mut self) -> _MONRDYW {
_MONRDYW { w: self }
}
#[doc = "Bit 7 - 7:7\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved7(&mut self) -> _RESERVED7W {
_RESERVED7W { w: self }
}
#[doc = "Bit 6 - 6:6\\] Indicates whether the software executing when the processor allocated the FP stack frame was able to set the BusFault exception to pending. 0: BusFault is disabled or priority did not permit setting the BusFault handler to the pending state when the floating-point stack frame was allocated. 1: BusFault is enabled and priority permitted setting the BusFault handler to the pending state when the floating-point stack frame was allocated."]
#[inline]
pub fn bfrdy(&mut self) -> _BFRDYW {
_BFRDYW { w: self }
}
#[doc = "Bit 5 - 5:5\\] Indicates whether the software executing when the processor allocated the FP stack frame was able to set the MemManage exception to pending. 0: MemManage is disabled or priority did not permit setting the MemManage handler to the pending state when the floating-point stack frame was allocated. 1: MemManage is enabled and priority permitted setting the MemManage handler to the pending state when the floating-point stack frame was allocated."]
#[inline]
pub fn mmrdy(&mut self) -> _MMRDYW {
_MMRDYW { w: self }
}
#[doc = "Bit 4 - 4:4\\] Indicates whether the software executing when the processor allocated the FP stack frame was able to set the HardFault exception to pending. 0: Priority did not permit setting the HardFault handler to the pending state when the floating-point stack frame was allocated. 1: Priority permitted setting the HardFault handler to the pending state when the floating-point stack frame was allocated."]
#[inline]
pub fn hfrdy(&mut self) -> _HFRDYW {
_HFRDYW { w: self }
}
#[doc = "Bit 3 - 3:3\\] Indicates the processor mode was Thread when it allocated the FP stack frame. 0: Mode was not Thread Mode when the floating-point stack frame was allocated. 1: Mode was Thread Mode when the floating-point stack frame was allocated."]
#[inline]
pub fn thread(&mut self) -> _THREADW {
_THREADW { w: self }
}
#[doc = "Bit 2 - 2:2\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved2(&mut self) -> _RESERVED2W {
_RESERVED2W { w: self }
}
#[doc = "Bit 1 - 1:1\\] Indicates the privilege level of the software executing was User (Unpriviledged) when the processor allocated the FP stack frame: 0: Privilege level was not user when the floating-point stack frame was allocated. 1: Privilege level was user when the floating-point stack frame was allocated."]
#[inline]
pub fn user(&mut self) -> _USERW {
_USERW { w: self }
}
#[doc = "Bit 0 - 0:0\\] Indicates whether Lazy preservation of the FP state is active: 0: Lazy state preservation is not active. 1: Lazy state preservation is active. floating-point stack frame has been allocated but saving state to it has been deferred."]
#[inline]
pub fn lspact(&mut self) -> _LSPACTW {
_LSPACTW { w: self }
}
}