#[doc = r" Value read from the register"]
pub struct R {
bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
bits: u32,
}
impl super::AIRCR {
#[doc = r" Modifies the contents of the register"]
#[inline]
pub fn modify<F>(&self, f: F)
where
for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
{
let bits = self.register.get();
let r = R { bits: bits };
let mut w = W { bits: bits };
f(&r, &mut w);
self.register.set(w.bits);
}
#[doc = r" Reads the contents of the register"]
#[inline]
pub fn read(&self) -> R {
R {
bits: self.register.get(),
}
}
#[doc = r" Writes to the register"]
#[inline]
pub fn write<F>(&self, f: F)
where
F: FnOnce(&mut W) -> &mut W,
{
let mut w = W::reset_value();
f(&mut w);
self.register.set(w.bits);
}
#[doc = r" Writes the reset value to the register"]
#[inline]
pub fn reset(&self) {
self.write(|w| w)
}
}
#[doc = r" Value of the field"]
pub struct VECTKEYR {
bits: u16,
}
impl VECTKEYR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u16 {
self.bits
}
}
#[doc = "Possible values of the field `ENDIANESS`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ENDIANESSR {
#[doc = "Big endian"]
BIG,
#[doc = "Little endian"]
LITTLE,
}
impl ENDIANESSR {
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
match *self {
ENDIANESSR::BIG => true,
ENDIANESSR::LITTLE => false,
}
}
#[allow(missing_docs)]
#[doc(hidden)]
#[inline]
pub fn _from(value: bool) -> ENDIANESSR {
match value {
true => ENDIANESSR::BIG,
false => ENDIANESSR::LITTLE,
}
}
#[doc = "Checks if the value of the field is `BIG`"]
#[inline]
pub fn is_big(&self) -> bool {
*self == ENDIANESSR::BIG
}
#[doc = "Checks if the value of the field is `LITTLE`"]
#[inline]
pub fn is_little(&self) -> bool {
*self == ENDIANESSR::LITTLE
}
}
#[doc = r" Value of the field"]
pub struct RESERVED11R {
bits: u8,
}
impl RESERVED11R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u8 {
self.bits
}
}
#[doc = r" Value of the field"]
pub struct PRIGROUPR {
bits: u8,
}
impl PRIGROUPR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u8 {
self.bits
}
}
#[doc = r" Value of the field"]
pub struct RESERVED3R {
bits: u8,
}
impl RESERVED3R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u8 {
self.bits
}
}
#[doc = r" Value of the field"]
pub struct SYSRESETREQR {
bits: bool,
}
impl SYSRESETREQR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct VECTCLRACTIVER {
bits: bool,
}
impl VECTCLRACTIVER {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct VECTRESETR {
bits: bool,
}
impl VECTRESETR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Proxy"]
pub struct _VECTKEYW<'a> {
w: &'a mut W,
}
impl<'a> _VECTKEYW<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u16) -> &'a mut W {
const MASK: u16 = 65535;
const OFFSET: u8 = 16;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = "Values that can be written to the field `ENDIANESS`"]
pub enum ENDIANESSW {
#[doc = "Big endian"]
BIG,
#[doc = "Little endian"]
LITTLE,
}
impl ENDIANESSW {
#[allow(missing_docs)]
#[doc(hidden)]
#[inline]
pub fn _bits(&self) -> bool {
match *self {
ENDIANESSW::BIG => true,
ENDIANESSW::LITTLE => false,
}
}
}
#[doc = r" Proxy"]
pub struct _ENDIANESSW<'a> {
w: &'a mut W,
}
impl<'a> _ENDIANESSW<'a> {
#[doc = r" Writes `variant` to the field"]
#[inline]
pub fn variant(self, variant: ENDIANESSW) -> &'a mut W {
{
self.bit(variant._bits())
}
}
#[doc = "Big endian"]
#[inline]
pub fn big(self) -> &'a mut W {
self.variant(ENDIANESSW::BIG)
}
#[doc = "Little endian"]
#[inline]
pub fn little(self) -> &'a mut W {
self.variant(ENDIANESSW::LITTLE)
}
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 15;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED11W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED11W<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u8) -> &'a mut W {
const MASK: u8 = 15;
const OFFSET: u8 = 11;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _PRIGROUPW<'a> {
w: &'a mut W,
}
impl<'a> _PRIGROUPW<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u8) -> &'a mut W {
const MASK: u8 = 7;
const OFFSET: u8 = 8;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED3W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED3W<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u8) -> &'a mut W {
const MASK: u8 = 31;
const OFFSET: u8 = 3;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _SYSRESETREQW<'a> {
w: &'a mut W,
}
impl<'a> _SYSRESETREQW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 2;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _VECTCLRACTIVEW<'a> {
w: &'a mut W,
}
impl<'a> _VECTCLRACTIVEW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 1;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _VECTRESETW<'a> {
w: &'a mut W,
}
impl<'a> _VECTRESETW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 0;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
impl R {
#[doc = r" Value of the register as raw bits"]
#[inline]
pub fn bits(&self) -> u32 {
self.bits
}
#[doc = "Bits 16:31 - 31:16\\] Register key. Writing to this register (AIRCR) requires 0x05FA in VECTKEY. Otherwise the write value is ignored. Read always returns 0xFA05."]
#[inline]
pub fn vectkey(&self) -> VECTKEYR {
let bits = {
const MASK: u16 = 65535;
const OFFSET: u8 = 16;
((self.bits >> OFFSET) & MASK as u32) as u16
};
VECTKEYR { bits }
}
#[doc = "Bit 15 - 15:15\\] Data endianness bit"]
#[inline]
pub fn endianess(&self) -> ENDIANESSR {
ENDIANESSR::_from({
const MASK: bool = true;
const OFFSET: u8 = 15;
((self.bits >> OFFSET) & MASK as u32) != 0
})
}
#[doc = "Bits 11:14 - 14:11\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved11(&self) -> RESERVED11R {
let bits = {
const MASK: u8 = 15;
const OFFSET: u8 = 11;
((self.bits >> OFFSET) & MASK as u32) as u8
};
RESERVED11R { bits }
}
#[doc = "Bits 8:10 - 10:8\\] Interrupt priority grouping field. This field is a binary point position indicator for creating subpriorities for exceptions that share the same pre-emption level. It divides the PRI_n field in the Interrupt Priority Registers (NVIC_IPR0, NVIC_IPR1,..., and NVIC_IPR8) into a pre-emption level and a subpriority level. The binary point is a left-of value. This means that the PRIGROUP value represents a point starting at the left of the Least Significant Bit (LSB). The lowest value might not be 0 depending on the number of bits allocated for priorities, and implementation choices."]
#[inline]
pub fn prigroup(&self) -> PRIGROUPR {
let bits = {
const MASK: u8 = 7;
const OFFSET: u8 = 8;
((self.bits >> OFFSET) & MASK as u32) as u8
};
PRIGROUPR { bits }
}
#[doc = "Bits 3:7 - 7:3\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved3(&self) -> RESERVED3R {
let bits = {
const MASK: u8 = 31;
const OFFSET: u8 = 3;
((self.bits >> OFFSET) & MASK as u32) as u8
};
RESERVED3R { bits }
}
#[doc = "Bit 2 - 2:2\\] Requests a warm reset. Setting this bit does not prevent Halting Debug from running."]
#[inline]
pub fn sysresetreq(&self) -> SYSRESETREQR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 2;
((self.bits >> OFFSET) & MASK as u32) != 0
};
SYSRESETREQR { bits }
}
#[doc = "Bit 1 - 1:1\\] Clears all active state information for active NMI, fault, and interrupts. It is the responsibility of the application to reinitialize the stack. This bit is for returning to a known state during debug. The bit self-clears. IPSR is not cleared by this operation. So, if used by an application, it must only be used at the base level of activation, or within a system handler whose active bit can be set."]
#[inline]
pub fn vectclractive(&self) -> VECTCLRACTIVER {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 1;
((self.bits >> OFFSET) & MASK as u32) != 0
};
VECTCLRACTIVER { bits }
}
#[doc = "Bit 0 - 0:0\\] System Reset bit. Resets the system, with the exception of debug components. This bit is reserved for debug use and can be written to 1 only when the core is halted. The bit self-clears. Writing this bit to 1 while core is not halted may result in unpredictable behavior."]
#[inline]
pub fn vectreset(&self) -> VECTRESETR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 0;
((self.bits >> OFFSET) & MASK as u32) != 0
};
VECTRESETR { bits }
}
}
impl W {
#[doc = r" Reset value of the register"]
#[inline]
pub fn reset_value() -> W {
W { bits: 4194631680 }
}
#[doc = r" Writes raw bits to the register"]
#[inline]
pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
self.bits = bits;
self
}
#[doc = "Bits 16:31 - 31:16\\] Register key. Writing to this register (AIRCR) requires 0x05FA in VECTKEY. Otherwise the write value is ignored. Read always returns 0xFA05."]
#[inline]
pub fn vectkey(&mut self) -> _VECTKEYW {
_VECTKEYW { w: self }
}
#[doc = "Bit 15 - 15:15\\] Data endianness bit"]
#[inline]
pub fn endianess(&mut self) -> _ENDIANESSW {
_ENDIANESSW { w: self }
}
#[doc = "Bits 11:14 - 14:11\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved11(&mut self) -> _RESERVED11W {
_RESERVED11W { w: self }
}
#[doc = "Bits 8:10 - 10:8\\] Interrupt priority grouping field. This field is a binary point position indicator for creating subpriorities for exceptions that share the same pre-emption level. It divides the PRI_n field in the Interrupt Priority Registers (NVIC_IPR0, NVIC_IPR1,..., and NVIC_IPR8) into a pre-emption level and a subpriority level. The binary point is a left-of value. This means that the PRIGROUP value represents a point starting at the left of the Least Significant Bit (LSB). The lowest value might not be 0 depending on the number of bits allocated for priorities, and implementation choices."]
#[inline]
pub fn prigroup(&mut self) -> _PRIGROUPW {
_PRIGROUPW { w: self }
}
#[doc = "Bits 3:7 - 7:3\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved3(&mut self) -> _RESERVED3W {
_RESERVED3W { w: self }
}
#[doc = "Bit 2 - 2:2\\] Requests a warm reset. Setting this bit does not prevent Halting Debug from running."]
#[inline]
pub fn sysresetreq(&mut self) -> _SYSRESETREQW {
_SYSRESETREQW { w: self }
}
#[doc = "Bit 1 - 1:1\\] Clears all active state information for active NMI, fault, and interrupts. It is the responsibility of the application to reinitialize the stack. This bit is for returning to a known state during debug. The bit self-clears. IPSR is not cleared by this operation. So, if used by an application, it must only be used at the base level of activation, or within a system handler whose active bit can be set."]
#[inline]
pub fn vectclractive(&mut self) -> _VECTCLRACTIVEW {
_VECTCLRACTIVEW { w: self }
}
#[doc = "Bit 0 - 0:0\\] System Reset bit. Resets the system, with the exception of debug components. This bit is reserved for debug use and can be written to 1 only when the core is halted. The bit self-clears. Writing this bit to 1 while core is not halted may result in unpredictable behavior."]
#[inline]
pub fn vectreset(&mut self) -> _VECTRESETW {
_VECTRESETW { w: self }
}
}