Struct vrp_core::models::ProblemBuilder

source ·
pub struct ProblemBuilder { /* private fields */ }
Expand description

Provides way to build a VRP definition.

Implementations§

source§

impl ProblemBuilder

source

pub fn add_job(self, job: Job) -> Self

Adds a job to the collection of the things to be done.

source

pub fn add_jobs(self, jobs: impl Iterator<Item = Job>) -> Self

Adds multiple jobs to the collection of the things to be done.

Examples found in repository?
examples/custom_objective.rs (line 109)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs where two are having top prio
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // mark two jobs as top priority (2 and 4 locations)
                    dimens.set_job_priority(idx % 2 == 0);
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity which doesn't need to return back to the depot
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(VehicleDetailBuilder::default().set_start_location(0).build()?)
        // only two jobs can be served by the vehicle
        .capacity(SingleDimLoad::new(2))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
More examples
Hide additional examples
examples/cvrp.rs (line 54)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs with location indices from 1 to 4
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                // each job is delivery job with demand=1
                .demand(Demand::delivery(1))
                // job has location, which is an index in routing matrix
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 4 vehicles
    let vehicles = (1..=4)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/custom_constraint.rs (line 94)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs when second and forth have fridge requirement
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // all jobs have fridge requirements, but only one vehicle will be allowed to serve them
                    dimens.set_job_hardware("fridge".to_string());
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 2 vehicles
    let vehicles = (1..=2)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                .dimension(|dimens| {
                    if idx % 2 == 0 {
                        // only one vehicle has a hardware requirement set to 'fridge'
                        dimens.set_vehicle_hardware(once("fridge".to_string()).collect());
                    }
                })
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/pdptw.rs (line 67)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // build two PUDO (pick up/drop off) jobs with demand=1 and permissive time windows (just to show API usage)
    let pudos = (1..=2)
        .map(|idx| {
            let location_idx = if idx == 1 { 1 } else { 3 };
            MultiBuilder::default()
                .id(format!("pudo{idx}").as_str())
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_pickup(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx)?
                        .build()?,
                )
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_delivery(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx + 1)?
                        .build()?,
                )
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(
            VehicleDetailBuilder::default()
                // vehicle starts at location with index 0 in routing matrix
                .set_start_location(0)
                .set_start_time(0.)
                // vehicle should return to location with index 0
                .set_end_location(0)
                .set_end_time(10000.)
                .build()?,
        )
        // the vehicle has capacity=1, so it is forced to do delivery after each pickup
        .capacity(SingleDimLoad::new(1))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(pudos.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
source

pub fn add_vehicle(self, vehicle: Vehicle) -> Self

Add a vehicle to the fleet. At least one has to be provided.

source

pub fn add_vehicles(self, vehicles: impl Iterator<Item = Vehicle>) -> Self

Add multiple vehicles to the fleet. At least one has to be provided.

Examples found in repository?
examples/custom_objective.rs (line 110)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs where two are having top prio
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // mark two jobs as top priority (2 and 4 locations)
                    dimens.set_job_priority(idx % 2 == 0);
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity which doesn't need to return back to the depot
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(VehicleDetailBuilder::default().set_start_location(0).build()?)
        // only two jobs can be served by the vehicle
        .capacity(SingleDimLoad::new(2))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
More examples
Hide additional examples
examples/cvrp.rs (line 55)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs with location indices from 1 to 4
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                // each job is delivery job with demand=1
                .demand(Demand::delivery(1))
                // job has location, which is an index in routing matrix
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 4 vehicles
    let vehicles = (1..=4)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/custom_constraint.rs (line 95)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs when second and forth have fridge requirement
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // all jobs have fridge requirements, but only one vehicle will be allowed to serve them
                    dimens.set_job_hardware("fridge".to_string());
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 2 vehicles
    let vehicles = (1..=2)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                .dimension(|dimens| {
                    if idx % 2 == 0 {
                        // only one vehicle has a hardware requirement set to 'fridge'
                        dimens.set_vehicle_hardware(once("fridge".to_string()).collect());
                    }
                })
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/pdptw.rs (line 68)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // build two PUDO (pick up/drop off) jobs with demand=1 and permissive time windows (just to show API usage)
    let pudos = (1..=2)
        .map(|idx| {
            let location_idx = if idx == 1 { 1 } else { 3 };
            MultiBuilder::default()
                .id(format!("pudo{idx}").as_str())
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_pickup(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx)?
                        .build()?,
                )
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_delivery(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx + 1)?
                        .build()?,
                )
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(
            VehicleDetailBuilder::default()
                // vehicle starts at location with index 0 in routing matrix
                .set_start_location(0)
                .set_start_time(0.)
                // vehicle should return to location with index 0
                .set_end_location(0)
                .set_end_time(10000.)
                .build()?,
        )
        // the vehicle has capacity=1, so it is forced to do delivery after each pickup
        .capacity(SingleDimLoad::new(1))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(pudos.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
source

pub fn with_vehicle_similarity( self, group_key_fn: impl Fn(&[Arc<Actor>]) -> Box<FleetGroupKeyFn> + 'static, ) -> Self

Sets a vehicle similarity function which allows grouping of similar vehicles together. That helps the solver to take more effective decisions job-vehicle assignment. Optional: when omitted, only vehicles with the same profile.index are grouped together.

source

pub fn with_goal(self, goal: GoalContext) -> Self

Adds a goal of optimization. Use GoalContextBuilder to create the one. A required field.

Examples found in repository?
examples/custom_objective.rs (line 111)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs where two are having top prio
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // mark two jobs as top priority (2 and 4 locations)
                    dimens.set_job_priority(idx % 2 == 0);
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity which doesn't need to return back to the depot
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(VehicleDetailBuilder::default().set_start_location(0).build()?)
        // only two jobs can be served by the vehicle
        .capacity(SingleDimLoad::new(2))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
More examples
Hide additional examples
examples/cvrp.rs (line 56)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs with location indices from 1 to 4
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                // each job is delivery job with demand=1
                .demand(Demand::delivery(1))
                // job has location, which is an index in routing matrix
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 4 vehicles
    let vehicles = (1..=4)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/custom_constraint.rs (line 96)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs when second and forth have fridge requirement
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // all jobs have fridge requirements, but only one vehicle will be allowed to serve them
                    dimens.set_job_hardware("fridge".to_string());
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 2 vehicles
    let vehicles = (1..=2)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                .dimension(|dimens| {
                    if idx % 2 == 0 {
                        // only one vehicle has a hardware requirement set to 'fridge'
                        dimens.set_vehicle_hardware(once("fridge".to_string()).collect());
                    }
                })
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/pdptw.rs (line 69)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // build two PUDO (pick up/drop off) jobs with demand=1 and permissive time windows (just to show API usage)
    let pudos = (1..=2)
        .map(|idx| {
            let location_idx = if idx == 1 { 1 } else { 3 };
            MultiBuilder::default()
                .id(format!("pudo{idx}").as_str())
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_pickup(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx)?
                        .build()?,
                )
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_delivery(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx + 1)?
                        .build()?,
                )
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(
            VehicleDetailBuilder::default()
                // vehicle starts at location with index 0 in routing matrix
                .set_start_location(0)
                .set_start_time(0.)
                // vehicle should return to location with index 0
                .set_end_location(0)
                .set_end_time(10000.)
                .build()?,
        )
        // the vehicle has capacity=1, so it is forced to do delivery after each pickup
        .capacity(SingleDimLoad::new(1))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(pudos.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
source

pub fn with_transport_cost( self, transport: Arc<dyn TransportCost + Send + Sync>, ) -> Self

Adds a transport distance/duration estimation logic. A typical implementation will normally wrap routing distance/duration matrices. A required field.

Examples found in repository?
examples/custom_objective.rs (line 112)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs where two are having top prio
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // mark two jobs as top priority (2 and 4 locations)
                    dimens.set_job_priority(idx % 2 == 0);
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity which doesn't need to return back to the depot
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(VehicleDetailBuilder::default().set_start_location(0).build()?)
        // only two jobs can be served by the vehicle
        .capacity(SingleDimLoad::new(2))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
More examples
Hide additional examples
examples/cvrp.rs (line 57)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs with location indices from 1 to 4
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                // each job is delivery job with demand=1
                .demand(Demand::delivery(1))
                // job has location, which is an index in routing matrix
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 4 vehicles
    let vehicles = (1..=4)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/custom_constraint.rs (line 97)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs when second and forth have fridge requirement
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // all jobs have fridge requirements, but only one vehicle will be allowed to serve them
                    dimens.set_job_hardware("fridge".to_string());
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 2 vehicles
    let vehicles = (1..=2)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                .dimension(|dimens| {
                    if idx % 2 == 0 {
                        // only one vehicle has a hardware requirement set to 'fridge'
                        dimens.set_vehicle_hardware(once("fridge".to_string()).collect());
                    }
                })
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/pdptw.rs (line 70)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // build two PUDO (pick up/drop off) jobs with demand=1 and permissive time windows (just to show API usage)
    let pudos = (1..=2)
        .map(|idx| {
            let location_idx = if idx == 1 { 1 } else { 3 };
            MultiBuilder::default()
                .id(format!("pudo{idx}").as_str())
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_pickup(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx)?
                        .build()?,
                )
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_delivery(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx + 1)?
                        .build()?,
                )
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(
            VehicleDetailBuilder::default()
                // vehicle starts at location with index 0 in routing matrix
                .set_start_location(0)
                .set_start_time(0.)
                // vehicle should return to location with index 0
                .set_end_location(0)
                .set_end_time(10000.)
                .build()?,
        )
        // the vehicle has capacity=1, so it is forced to do delivery after each pickup
        .capacity(SingleDimLoad::new(1))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(pudos.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
source

pub fn with_activity_cost( self, activity: Arc<dyn ActivityCost + Send + Sync>, ) -> Self

Adds an activity service time estimation logic. An optional field: SimpleActivityCost will be used by default.

source

pub fn with_extras(self, extras: Extras) -> Self

Adds an extras: an extension mechanism to pass arbitrary properties associated within the problem definition. An optional field.

source

pub fn build(self) -> GenericResult<Problem>

Builds a problem definition. Returns Err in case of an invalid configuration.

Examples found in repository?
examples/custom_objective.rs (line 113)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs where two are having top prio
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // mark two jobs as top priority (2 and 4 locations)
                    dimens.set_job_priority(idx % 2 == 0);
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity which doesn't need to return back to the depot
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(VehicleDetailBuilder::default().set_start_location(0).build()?)
        // only two jobs can be served by the vehicle
        .capacity(SingleDimLoad::new(2))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
More examples
Hide additional examples
examples/cvrp.rs (line 58)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs with location indices from 1 to 4
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                // each job is delivery job with demand=1
                .demand(Demand::delivery(1))
                // job has location, which is an index in routing matrix
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 4 vehicles
    let vehicles = (1..=4)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/custom_constraint.rs (line 98)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // create 4 jobs when second and forth have fridge requirement
    let single_jobs = (1..=4)
        .map(|idx| {
            SingleBuilder::default()
                .id(format!("job{idx}").as_str())
                .demand(Demand::delivery(1))
                .dimension(|dimens| {
                    // all jobs have fridge requirements, but only one vehicle will be allowed to serve them
                    dimens.set_job_hardware("fridge".to_string());
                })
                .location(idx)?
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create 2 vehicles
    let vehicles = (1..=2)
        .map(|idx| {
            VehicleBuilder::default()
                .id(format!("v{idx}").as_str())
                .add_detail(
                    VehicleDetailBuilder::default()
                        // vehicle starts at location with index 0 in routing matrix
                        .set_start_location(0)
                        // vehicle should return to location with index 0
                        .set_end_location(0)
                        .build()?,
                )
                .dimension(|dimens| {
                    if idx % 2 == 0 {
                        // only one vehicle has a hardware requirement set to 'fridge'
                        dimens.set_vehicle_hardware(once("fridge".to_string()).collect());
                    }
                })
                // each vehicle has capacity=2, so it can serve at most 2 jobs
                .capacity(SingleDimLoad::new(2))
                .build()
        })
        .collect::<Result<Vec<_>, _>>()?;

    ProblemBuilder::default()
        .add_jobs(single_jobs.into_iter())
        .add_vehicles(vehicles.into_iter())
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}
examples/pdptw.rs (line 71)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
fn define_problem(goal: GoalContext, transport: Arc<dyn TransportCost + Send + Sync>) -> GenericResult<Problem> {
    // build two PUDO (pick up/drop off) jobs with demand=1 and permissive time windows (just to show API usage)
    let pudos = (1..=2)
        .map(|idx| {
            let location_idx = if idx == 1 { 1 } else { 3 };
            MultiBuilder::default()
                .id(format!("pudo{idx}").as_str())
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_pickup(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx)?
                        .build()?,
                )
                .add_job(
                    SingleBuilder::default()
                        .demand(Demand::pudo_delivery(1))
                        .times(vec![TimeWindow::new(0., 1000.)])?
                        .duration(10.)?
                        .location(location_idx + 1)?
                        .build()?,
                )
                .build_as_job()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // define a single vehicle with limited capacity
    let vehicle = VehicleBuilder::default()
        .id("v1".to_string().as_str())
        .add_detail(
            VehicleDetailBuilder::default()
                // vehicle starts at location with index 0 in routing matrix
                .set_start_location(0)
                .set_start_time(0.)
                // vehicle should return to location with index 0
                .set_end_location(0)
                .set_end_time(10000.)
                .build()?,
        )
        // the vehicle has capacity=1, so it is forced to do delivery after each pickup
        .capacity(SingleDimLoad::new(1))
        .build()?;

    ProblemBuilder::default()
        .add_jobs(pudos.into_iter())
        .add_vehicles(once(vehicle))
        .with_goal(goal)
        .with_transport_cost(transport)
        .build()
}

Trait Implementations§

source§

impl Default for ProblemBuilder

source§

fn default() -> ProblemBuilder

Returns the “default value” for a type. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T> Pointable for T

source§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V