1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use crate::construction::heuristics::UnassignmentInfo;
use crate::models::common::{Cost, Location};
use crate::models::problem::*;
use crate::models::solution::{Registry, Route};
use crate::models::*;
use rosomaxa::evolution::TelemetryMetrics;
use rosomaxa::prelude::*;
use std::fmt::{Debug, Formatter};
use std::sync::Arc;

/// Defines a VRP problem. You can use a [`ProblemBuilder`] to create the one.
pub struct Problem {
    /// Specifies used fleet.
    pub fleet: Arc<Fleet>,

    /// Specifies all jobs.
    pub jobs: Arc<Jobs>,

    /// Specifies jobs which preassigned to specific vehicles and/or drivers.
    pub locks: Vec<Arc<Lock>>,

    /// Specifies optimization goal with the corresponding global/local objectives and invariants.
    pub goal: Arc<GoalContext>,

    /// Specifies activity costs.
    pub activity: Arc<dyn ActivityCost + Send + Sync>,

    /// Specifies transport costs.
    pub transport: Arc<dyn TransportCost + Send + Sync>,

    /// Specifies index for storing extra parameters of arbitrary type.
    pub extras: Arc<Extras>,
}

impl Debug for Problem {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct(short_type_name::<Self>())
            .field("fleet", &self.fleet)
            .field("jobs", &self.jobs.size())
            .field("locks", &self.locks.len())
            .field("goal", self.goal.as_ref())
            .finish_non_exhaustive()
    }
}

/// Represents a VRP solution.
pub struct Solution {
    /// A total solution cost.
    /// Definition of the cost depends on VRP variant.
    pub cost: Cost,

    /// Actor's registry.
    pub registry: Registry,

    /// List of assigned routes.
    pub routes: Vec<Route>,

    /// List of unassigned jobs within reason code.
    pub unassigned: Vec<(Job, UnassignmentInfo)>,

    /// An optional telemetry metrics if available.
    pub telemetry: Option<TelemetryMetrics>,
}

/// An enumeration which specifies how jobs should be ordered in tour.
pub enum LockOrder {
    /// Jobs can be reshuffled in any order.
    Any,
    /// Jobs cannot be reshuffled, but new job can be inserted in between.
    Sequence,
    /// Jobs cannot be reshuffled and no jobs can be inserted in between.
    Strict,
}

/// An enumeration which specifies how other jobs can be inserted in tour.
#[derive(Clone)]
pub enum LockPosition {
    /// No specific position.
    Any,
    /// First job follows departure.
    Departure,
    /// Last job is before arrival.
    Arrival,
    /// First and last jobs should be between departure and arrival.
    Fixed,
}

/// Specifies lock details.
pub struct LockDetail {
    /// Lock order.
    pub order: LockOrder,
    /// Lock position.
    pub position: LockPosition,
    /// Jobs affected by the lock.
    pub jobs: Vec<Job>,
}

/// Contains information about jobs locked to specific actors.
pub struct Lock {
    /// Specifies condition when locked jobs can be assigned to a specific actor
    pub condition_fn: Arc<dyn Fn(&Actor) -> bool + Sync + Send>,
    /// Specifies lock details.
    pub details: Vec<LockDetail>,
    /// Specifies whether route is created or not in solution from the beginning.
    /// True means that route is not created till evaluation.
    pub is_lazy: bool,
}

impl LockDetail {
    /// Creates a new instance of `LockDetail`.
    pub fn new(order: LockOrder, position: LockPosition, jobs: Vec<Job>) -> Self {
        Self { order, position, jobs }
    }
}

impl Lock {
    /// Creates a new instance of `Lock`.
    pub fn new(condition: Arc<dyn Fn(&Actor) -> bool + Sync + Send>, details: Vec<LockDetail>, is_lazy: bool) -> Self {
        Self { condition_fn: condition, details, is_lazy }
    }
}

/// Specifies a function to group actors based on their similarity.
pub type FleetGroupKeyFn = dyn Fn(&Actor) -> usize + Send + Sync;

/// Provides way to build a VRP definition.
#[derive(Default)]
pub struct ProblemBuilder {
    jobs: Vec<Job>,
    vehicles: Vec<Vehicle>,
    #[allow(clippy::type_complexity)]
    group_key_fn: Option<Box<dyn Fn(&[Arc<Actor>]) -> Box<FleetGroupKeyFn>>>,
    goal: Option<Arc<GoalContext>>,
    activity: Option<Arc<dyn ActivityCost + Send + Sync>>,
    transport: Option<Arc<dyn TransportCost + Send + Sync>>,
    extras: Option<Arc<Extras>>,
}

impl ProblemBuilder {
    /// Adds a job to the collection of the things to be done.
    pub fn add_job(mut self, job: Job) -> Self {
        self.jobs.push(job);
        self
    }

    /// Adds multiple jobs to the collection of the things to be done.
    pub fn add_jobs(mut self, jobs: impl Iterator<Item = Job>) -> Self {
        self.jobs.extend(jobs);
        self
    }

    /// Add a vehicle to the fleet.
    /// At least one has to be provided.
    pub fn add_vehicle(mut self, vehicle: Vehicle) -> Self {
        self.vehicles.push(vehicle);
        self
    }

    /// Add multiple vehicles to the fleet.
    /// At least one has to be provided.
    pub fn add_vehicles(mut self, vehicles: impl Iterator<Item = Vehicle>) -> Self {
        self.vehicles.extend(vehicles);
        self
    }

    /// Sets a vehicle similarity function which allows grouping of similar vehicles together.
    /// That helps the solver to take more effective decisions job-vehicle assignment.
    /// Optional: when omitted, only vehicles with the same `profile.index` are grouped together.
    pub fn with_vehicle_similarity(
        mut self,
        group_key_fn: impl Fn(&[Arc<Actor>]) -> Box<FleetGroupKeyFn> + 'static,
    ) -> Self {
        self.group_key_fn = Some(Box::new(group_key_fn));
        self
    }

    /// Adds a goal of optimization. Use [GoalContextBuilder] to create the one.
    /// A required field.
    pub fn with_goal(mut self, goal: GoalContext) -> Self {
        self.goal = Some(Arc::new(goal));
        self
    }

    /// Adds a transport distance/duration estimation logic. A typical implementation will normally
    /// wrap routing distance/duration matrices.
    /// A required field.
    pub fn with_transport_cost(mut self, transport: Arc<dyn TransportCost + Send + Sync>) -> Self {
        self.transport = Some(transport);
        self
    }

    /// Adds an activity service time estimation logic.
    /// An optional field: [SimpleActivityCost] will be used by default.
    pub fn with_activity_cost(mut self, activity: Arc<dyn ActivityCost + Send + Sync>) -> Self {
        self.activity = Some(activity);
        self
    }

    /// Adds an extras: an extension mechanism to pass arbitrary properties associated within
    /// the problem definition.
    /// An optional field.
    pub fn with_extras(mut self, extras: Extras) -> Self {
        self.extras = Some(Arc::new(extras));
        self
    }

    /// Builds a problem definition.
    /// Returns [Err] in case of an invalid configuration.
    pub fn build(mut self) -> GenericResult<Problem> {
        if self.jobs.is_empty() {
            return Err("empty list of jobs: specify at least one job".into());
        }

        if self.vehicles.is_empty() {
            return Err("empty list of vehicles: specify at least one vehicle".into());
        }

        // analyze user input
        let transport = self.transport.take().ok_or_else(|| {
            GenericError::from("no information about routing data: use 'with_transport_cost' method to specify it")
        })?;
        let activity = self.activity.take().unwrap_or_else(|| Arc::new(SimpleActivityCost::default()));
        let goal = self
            .goal
            .take()
            .ok_or_else(|| GenericError::from("unknown goal of optimization: use 'with_goal' method to set it"))?;
        let extras = self.extras.take().unwrap_or_else(|| Arc::new(Extras::default()));

        // setup fleet
        // NOTE: driver concept is not fully supported yet, but we must provide at least one.
        let driver = Arc::new(Driver::empty());
        let vehicles = self.vehicles.into_iter().map(Arc::new).collect();
        let group_key = self.group_key_fn.take().unwrap_or_else(|| Box::new(|_| Box::new(|a| a.vehicle.profile.index)));
        let fleet = Arc::new(Fleet::new(vec![driver], vehicles, group_key));

        // setup jobs
        let jobs = Arc::new(Jobs::new(fleet.as_ref(), self.jobs, transport.as_ref()));

        Ok(Problem { fleet, jobs, locks: vec![], goal, activity, transport, extras })
    }
}

impl Solution {
    /// Iterates through all tours and returns locations of each activity in the order they are visited.
    pub fn get_locations(&self) -> impl Iterator<Item = impl Iterator<Item = Location> + '_> + '_ {
        self.routes.iter().map(|route| route.tour.all_activities().map(|activity| activity.place.location))
    }
}