Enum tetra::time::Timestep

source ·
#[non_exhaustive]
pub enum Timestep {
    Fixed(f64),
    Variable,
}
Expand description

The different timestep modes that a game can have.

Serde

Serialization and deserialization of this type (via Serde) can be enabled via the serde_support feature.

Variants (Non-exhaustive)§

This enum is marked as non-exhaustive
Non-exhaustive enums could have additional variants added in future. Therefore, when matching against variants of non-exhaustive enums, an extra wildcard arm must be added to account for any future variants.
§

Fixed(f64)

In fixed timestep mode, updates will happen at a consistent rate (the f64 value in the enum variant representing the number of times per second), while rendering will happen as fast as the hardware (and vsync settings) will allow.

This has the advantage of making your game’s updates deterministic, so they will act the same on hardware of different speeds. However, it can lead to some slight stutter if your rendering code does not account for the possibility for updating and rendering to be out of sync with each other.

To avoid stutter, you should interpolate your rendering using get_blend_factor. The interpolation example in the Tetra repository shows some different approaches to doing this.

This mode is currently the default.

§

Variable

In variable timestep mode, updates and rendering will happen in lockstep, one after the other, as fast as the hardware (and vsync settings) will allow.

This has the advantage of being simple to reason about (updates can never happen multiple times or get skipped), but is not deterministic, so your updates may not act the same on every run of the game loop.

To integrate the amount of time that has passed into your game’s calculations, use get_delta_time.

Trait Implementations§

source§

impl Clone for Timestep

source§

fn clone(&self) -> Timestep

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Timestep

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Copy for Timestep

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<F, T> IntoSample<T> for Fwhere T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize = mem::align_of::<T>()

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for Twhere U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<S, T> Duplex<S> for Twhere T: FromSample<S> + ToSample<S>,