pub struct PyLogisticRegression { /* private fields */ }Expand description
Logistic Regression (aka logit, MaxEnt) classifier.
In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the ‘multi_class’ option is set to ‘ovr’, and uses the cross-entropy loss if the ‘multi_class’ option is set to ‘multinomial’. (Currently the ‘multinomial’ option is supported only by the ‘lbfgs’, ‘sag’, ‘saga’ and ‘newton-cg’ solvers.)
This class implements regularized logistic regression using various solvers. Note that regularization is applied by default. It can handle both dense and sparse input. Use C-ordered arrays containing 64-bit floats for optimal performance; any other input format will be converted (and copied).
The ‘newton-cg’, ‘sag’, and ‘lbfgs’ solvers support only L2 regularization with primal formulation, or no regularization. The Elastic-Net regularization is only supported by the ‘saga’ solver.
§Parameters
penalty : {‘l1’, ‘l2’, ‘elasticnet’}, default=‘l2’ Specify the norm of the penalty:
- 'l2': add a L2 penalty term and it is the default choice;
- 'l1': add a L1 penalty term;
- 'elasticnet': both L1 and L2 penalty terms are added.tol : float, default=1e-4 Tolerance for stopping criteria.
C : float, default=1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.
fit_intercept : bool, default=True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.
class_weight : dict or ‘balanced’, default=None
Weights associated with classes in the form {class_label: weight}.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.random_state : int, default=None
Used when solver == ‘sag’, ‘saga’ to shuffle the
data. See :term:Glossary <random_state> for details.
solver : {‘lbfgs’, ‘newton-cg’, ‘sag’, ‘saga’}, default=‘lbfgs’
Algorithm to use in the optimization problem. Default is 'lbfgs'.
To choose a solver, you might want to consider the following aspects:
- For small datasets, 'lbfgs' is a good choice, whereas 'sag'
and 'saga' are faster for large ones;
- For multiclass problems, only 'newton-cg', 'sag', 'saga' and
'lbfgs' handle multinomial loss.max_iter : int, default=100 Maximum number of iterations taken for the solvers to converge.
multi_class : {‘auto’, ‘ovr’, ‘multinomial’}, default=‘auto’ If the option chosen is ‘ovr’, then a binary problem is fit for each label. For ‘multinomial’ the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. ‘auto’ selects ‘ovr’ if the data is binary, and otherwise selects ‘multinomial’.
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:the Glossary <warm_start>.
n_jobs : int, default=None
Number of CPU cores used when parallelizing over classes if
multi_class=‘ovr’“. None means 1 unless in a
:obj:joblib.parallel_backend context. -1 means using all
processors. See :term:Glossary <n_jobs> for more details.
l1_ratio : float, default=None
The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1. Only
used if penalty='elasticnet'. Setting l1_ratio=0 is equivalent
to using penalty='l2', while setting l1_ratio=1 is equivalent
to using penalty='l1'. For 0 < l1_ratio <1, the penalty is a
combination of L1 and L2.
§Attributes
classes_ : ndarray of shape (n_classes, ) A list of class labels known to the classifier.
coef_ : ndarray of shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function.
`coef_` is of shape (1, n_features) when the given problem is binary.intercept_ : float or ndarray of shape (n_classes,) Intercept (a.k.a. bias) added to the decision function.
If `fit_intercept` is set to False, the intercept is set to zero.
`intercept_` is of shape (1,) when the given problem is binary.n_features_in_ : int
Number of features seen during :term:fit.
§Examples
from sklears_python import LogisticRegression import numpy as np X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([0, 0, 1, 1]) clf = LogisticRegression(random_state=0).fit(X, y) clf.predict(X[:2, :]) array([0, 0]) clf.predict_proba(X[:2, :]) array([[…]]) clf.score(X, y) 1.0
§Notes
The underlying implementation uses optimized solvers from sklears-linear.
§References
L-BFGS-B – Software for Large-scale Bound-constrained Optimization Ciyou Zhu, Richard Byrd, Jorge Nocedal and Jose Luis Morales. http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
SAG – Mark Schmidt, Nicolas Le Roux, and Francis Bach Minimizing Finite Sums with the Stochastic Average Gradient https://hal.inria.fr/hal-00860051/document
SAGA – Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202
Trait Implementations§
Source§impl<'py> IntoPyObject<'py> for PyLogisticRegression
impl<'py> IntoPyObject<'py> for PyLogisticRegression
Source§type Target = PyLogisticRegression
type Target = PyLogisticRegression
Source§type Output = Bound<'py, <PyLogisticRegression as IntoPyObject<'py>>::Target>
type Output = Bound<'py, <PyLogisticRegression as IntoPyObject<'py>>::Target>
Source§fn into_pyobject(
self,
py: Python<'py>,
) -> Result<<Self as IntoPyObject<'_>>::Output, <Self as IntoPyObject<'_>>::Error>
fn into_pyobject( self, py: Python<'py>, ) -> Result<<Self as IntoPyObject<'_>>::Output, <Self as IntoPyObject<'_>>::Error>
Source§impl PyClass for PyLogisticRegression
impl PyClass for PyLogisticRegression
Source§impl PyClassImpl for PyLogisticRegression
impl PyClassImpl for PyLogisticRegression
Source§const IS_BASETYPE: bool = false
const IS_BASETYPE: bool = false
Source§const IS_SUBCLASS: bool = false
const IS_SUBCLASS: bool = false
Source§const IS_MAPPING: bool = false
const IS_MAPPING: bool = false
Source§const IS_SEQUENCE: bool = false
const IS_SEQUENCE: bool = false
Source§const IS_IMMUTABLE_TYPE: bool = false
const IS_IMMUTABLE_TYPE: bool = false
Source§type ThreadChecker = SendablePyClass<PyLogisticRegression>
type ThreadChecker = SendablePyClass<PyLogisticRegression>
Source§type PyClassMutability = <<PyAny as PyClassBaseType>::PyClassMutability as PyClassMutability>::MutableChild
type PyClassMutability = <<PyAny as PyClassBaseType>::PyClassMutability as PyClassMutability>::MutableChild
Source§type BaseNativeType = PyAny
type BaseNativeType = PyAny
PyAny by default, and when you declare
#[pyclass(extends=PyDict)], it’s PyDict.fn items_iter() -> PyClassItemsIter
fn lazy_type_object() -> &'static LazyTypeObject<Self>
fn dict_offset() -> Option<isize>
fn weaklist_offset() -> Option<isize>
Source§impl PyClassNewTextSignature<PyLogisticRegression> for PyClassImplCollector<PyLogisticRegression>
impl PyClassNewTextSignature<PyLogisticRegression> for PyClassImplCollector<PyLogisticRegression>
fn new_text_signature(self) -> Option<&'static str>
Source§impl<'a, 'py> PyFunctionArgument<'a, 'py, false> for &'a PyLogisticRegression
impl<'a, 'py> PyFunctionArgument<'a, 'py, false> for &'a PyLogisticRegression
Source§impl<'a, 'py> PyFunctionArgument<'a, 'py, false> for &'a mut PyLogisticRegression
impl<'a, 'py> PyFunctionArgument<'a, 'py, false> for &'a mut PyLogisticRegression
Source§impl PyMethods<PyLogisticRegression> for PyClassImplCollector<PyLogisticRegression>
impl PyMethods<PyLogisticRegression> for PyClassImplCollector<PyLogisticRegression>
fn py_methods(self) -> &'static PyClassItems
Source§impl PyTypeInfo for PyLogisticRegression
impl PyTypeInfo for PyLogisticRegression
Source§fn type_object_raw(py: Python<'_>) -> *mut PyTypeObject
fn type_object_raw(py: Python<'_>) -> *mut PyTypeObject
Source§fn type_object(py: Python<'_>) -> Bound<'_, PyType>
fn type_object(py: Python<'_>) -> Bound<'_, PyType>
impl DerefToPyAny for PyLogisticRegression
Auto Trait Implementations§
impl Freeze for PyLogisticRegression
impl RefUnwindSafe for PyLogisticRegression
impl Send for PyLogisticRegression
impl Sync for PyLogisticRegression
impl Unpin for PyLogisticRegression
impl UnwindSafe for PyLogisticRegression
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<'py, T> IntoPyObjectExt<'py> for Twhere
T: IntoPyObject<'py>,
impl<'py, T> IntoPyObjectExt<'py> for Twhere
T: IntoPyObject<'py>,
Source§fn into_bound_py_any(self, py: Python<'py>) -> Result<Bound<'py, PyAny>, PyErr>
fn into_bound_py_any(self, py: Python<'py>) -> Result<Bound<'py, PyAny>, PyErr>
self into an owned Python object, dropping type information.