sklears-python 0.1.0-alpha.1

Python bindings for sklears machine learning library using PyO3
Documentation

Sklears Python Bindings

Crates.io Documentation License Minimum Rust Version

Python bindings for the sklears machine learning library, providing a high-performance, scikit-learn compatible interface through PyO3.

Latest release: 0.1.0-alpha.1 (October 13, 2025). See the workspace release notes for highlights and upgrade guidance.

Features

  • Drop-in replacement for scikit-learn's most common algorithms
  • 3-100x performance improvements over scikit-learn
  • Full NumPy array compatibility with zero-copy operations where possible
  • Comprehensive error handling with Python exceptions
  • Memory-safe operations with automatic reference counting
  • Scikit-learn compatible API for easy migration

Supported Algorithms

Linear Models

  • LinearRegression - Ordinary least squares linear regression
  • Ridge - Ridge regression with L2 regularization
  • Lasso - Lasso regression with L1 regularization
  • LogisticRegression - Logistic regression for classification

Clustering

  • KMeans - K-Means clustering algorithm
  • DBSCAN - Density-based spatial clustering

Preprocessing

  • StandardScaler - Standardize features by removing mean and scaling to unit variance
  • MinMaxScaler - Scale features to a given range
  • LabelEncoder - Encode target labels with value between 0 and n_classes-1

Model Selection

  • train_test_split - Split arrays into random train and test subsets
  • KFold - K-Fold cross-validator
  • StratifiedKFold - Stratified K-Fold cross-validator
  • cross_val_score - Evaluate metric(s) by cross-validation
  • cross_val_predict - Generate cross-validated estimates

Metrics

  • accuracy_score - Classification accuracy
  • mean_squared_error - Mean squared error for regression
  • mean_absolute_error - Mean absolute error for regression
  • r2_score - R² (coefficient of determination) score
  • precision_score - Precision for classification
  • recall_score - Recall for classification
  • f1_score - F1 score for classification
  • confusion_matrix - Confusion matrix for classification
  • classification_report - Text report of classification metrics

Installation

Prerequisites

  • Python 3.8 or later
  • NumPy
  • Rust 1.70 or later
  • PyO3 and Maturin for building

Building from Source

  1. Clone the repository:

    git clone https://github.com/cool-japan/sklears.git
    cd sklears/crates/sklears-python
    
  2. Install Maturin:

    pip install maturin
    
  3. Build and install the package:

    maturin develop --release
    
  4. Or build a wheel:

    maturin build --release
    pip install target/wheels/sklears_python-*.whl
    

Quick Start

import numpy as np
import sklears_python as skl

# Generate sample data
X = np.random.randn(100, 4)
y = np.random.randn(100)

# Train a linear regression model
model = skl.LinearRegression()
model.fit(X, y)
predictions = model.predict(X)

# Calculate R² score
score = model.score(X, y)
print(f"R² score: {score:.3f}")

Performance Comparison

Here's a typical performance comparison with scikit-learn:

import time
import numpy as np
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
import sklears_python as skl
from sklearn.linear_model import LinearRegression as SklearnLR

# Generate data
X, y = make_regression(n_samples=10000, n_features=100, noise=0.1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Sklears
start = time.time()
model = skl.LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
sklears_time = time.time() - start

# Scikit-learn
start = time.time()
sklearn_model = SklearnLR()
sklearn_model.fit(X_train, y_train)
sklearn_predictions = sklearn_model.predict(X_test)
sklearn_time = time.time() - start

print(f"Sklears time: {sklears_time:.4f}s")
print(f"Sklearn time: {sklearn_time:.4f}s")
print(f"Speedup: {sklearn_time / sklears_time:.2f}x")

API Compatibility

The sklears Python bindings are designed to be API-compatible with scikit-learn. Most existing scikit-learn code should work with minimal changes:

Before (scikit-learn):

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

After (sklears):

import sklears_python as skl

# All functions and classes are available in the main module
model = skl.LinearRegression()
scaler = skl.StandardScaler()
X_train, X_test, y_train, y_test = skl.train_test_split(X, y)
mse = skl.mean_squared_error(y_true, y_pred)

Memory Management

The bindings are designed to be memory-efficient:

  • Zero-copy operations where possible using NumPy's C API
  • Automatic memory management through PyO3's reference counting
  • Efficient data structures using ndarray and sprs for sparse matrices
  • Streaming support for large datasets that don't fit in memory

Error Handling

All Rust errors are properly converted to Python exceptions:

import sklears_python as skl
import numpy as np

try:
    # This will raise a ValueError if arrays have incompatible shapes
    model = skl.LinearRegression()
    model.fit(np.array([[1, 2], [3, 4]]), np.array([1, 2, 3]))  # Shape mismatch
except ValueError as e:
    print(f"Error: {e}")

System Information

Get information about your sklears installation:

import sklears_python as skl

# Version information
print(f"Version: {skl.get_version()}")

# Build information
build_info = skl.get_build_info()
for key, value in build_info.items():
    print(f"{key}: {value}")

# Hardware capabilities
hardware_info = skl.get_hardware_info()
print("Hardware support:")
for feature, supported in hardware_info.items():
    print(f"  {feature}: {supported}")

# Performance benchmarks
benchmarks = skl.benchmark_basic_operations()
print("Performance benchmarks:")
for operation, time_ms in benchmarks.items():
    print(f"  {operation}: {time_ms:.2f} ms")

Configuration

Set global configuration options:

import sklears_python as skl

# Set number of threads for parallel operations
skl.set_config("n_jobs", "4")

# Get current configuration
config = skl.get_config()
print(config)

Examples

See the examples/ directory for comprehensive usage examples:

  • python_demo.py - Complete demonstration of all features
  • Performance comparison scripts
  • Real-world use cases

Contributing

Contributions are welcome! Please see the main sklears repository for contribution guidelines.

License

This project is licensed under the MIT OR Apache-2.0 license.

Acknowledgments

  • Built with PyO3 for Rust-Python interoperability
  • Compatible with NumPy arrays
  • API inspired by scikit-learn