BayesianGaussianMixture

Struct BayesianGaussianMixture 

Source
pub struct BayesianGaussianMixture<S = Untrained> { /* private fields */ }
Expand description

Bayesian Gaussian Mixture Model

A Bayesian variant of Gaussian mixture model that uses variational inference to automatically determine the effective number of components. This implementation provides uncertainty quantification and automatic model selection capabilities.

The model uses variational Bayesian inference with proper priors on the mixture weights, means, and covariances to enable automatic component selection.

§Parameters

  • n_components - Maximum number of mixture components
  • covariance_type - Type of covariance parameters (currently supports “full”)
  • tol - Convergence threshold for the variational lower bound
  • reg_covar - Regularization added to the diagonal of covariance
  • max_iter - Maximum number of variational EM iterations
  • random_state - Random state for reproducibility
  • warm_start - Whether to use previous fit as initialization
  • weight_concentration_prior_type - Type of prior on mixture weights
  • weight_concentration_prior - Prior concentration parameter for mixture weights
  • mean_precision_prior - Prior precision for component means
  • mean_prior - Prior mean for component means
  • degrees_of_freedom_prior - Prior degrees of freedom for covariance matrices
  • covariance_prior - Prior scale for covariance matrices

§Examples

use sklears_mixture::{BayesianGaussianMixture, CovarianceType};
use sklears_core::traits::{Predict, Fit};
use scirs2_core::ndarray::array;

let X = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [10.0, 10.0], [11.0, 11.0], [12.0, 12.0]];

let bgmm = BayesianGaussianMixture::new()
    .n_components(4)  // Will automatically select effective number
    .max_iter(100);
let fitted = bgmm.fit(&X.view(), &()).unwrap();
let labels = fitted.predict(&X.view()).unwrap();
println!("Effective components: {}", fitted.n_components_effective());

Implementations§

Source§

impl BayesianGaussianMixture<Untrained>

Source

pub fn new() -> Self

Create a new BayesianGaussianMixture instance

Source

pub fn n_components(self, n_components: usize) -> Self

Set the maximum number of components

Source

pub fn covariance_type(self, covariance_type: String) -> Self

Set the covariance type

Source

pub fn tol(self, tol: f64) -> Self

Set the convergence tolerance

Source

pub fn reg_covar(self, reg_covar: f64) -> Self

Set the regularization parameter

Source

pub fn max_iter(self, max_iter: usize) -> Self

Set the maximum number of iterations

Source

pub fn random_state(self, random_state: u64) -> Self

Set the random state

Source

pub fn warm_start(self, warm_start: bool) -> Self

Set warm start

Source

pub fn weight_concentration_prior_type(self, prior_type: String) -> Self

Set weight concentration prior type

Source

pub fn weight_concentration_prior(self, prior: f64) -> Self

Set weight concentration prior

Source

pub fn mean_precision_prior(self, prior: f64) -> Self

Set mean precision prior

Source§

impl BayesianGaussianMixture<BayesianGaussianMixtureTrained>

Source

pub fn weights(&self) -> &Array1<f64>

Get the mixture weights

Source

pub fn means(&self) -> &Array2<f64>

Get the component means

Source

pub fn covariances(&self) -> &[Array2<f64>]

Get the component covariances

Source

pub fn n_components_effective(&self) -> usize

Get the effective number of components

Source

pub fn lower_bound(&self) -> f64

Get the lower bound on the log likelihood

Source

pub fn converged(&self) -> bool

Check if the algorithm converged

Source

pub fn n_iter(&self) -> usize

Get the number of iterations performed

Source

pub fn predict_proba(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>>

Predict probabilities for each component

Source

pub fn score_samples(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>>

Compute the per-sample log-likelihood

Source

pub fn score(&self, X: &ArrayView2<'_, Float>) -> SklResult<f64>

Compute the average log-likelihood

Trait Implementations§

Source§

impl<S: Clone> Clone for BayesianGaussianMixture<S>

Source§

fn clone(&self) -> BayesianGaussianMixture<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for BayesianGaussianMixture<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for BayesianGaussianMixture<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for BayesianGaussianMixture<Untrained>

Source§

type Config = ()

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for BayesianGaussianMixture<Untrained>

Source§

type Fitted = BayesianGaussianMixture<BayesianGaussianMixtureTrained>

The fitted model type
Source§

fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BayesianGaussianMixture<BayesianGaussianMixtureTrained>

Source§

fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

§

impl<S> Freeze for BayesianGaussianMixture<S>
where S: Freeze,

§

impl<S> RefUnwindSafe for BayesianGaussianMixture<S>
where S: RefUnwindSafe,

§

impl<S> Send for BayesianGaussianMixture<S>
where S: Send,

§

impl<S> Sync for BayesianGaussianMixture<S>
where S: Sync,

§

impl<S> Unpin for BayesianGaussianMixture<S>
where S: Unpin,

§

impl<S> UnwindSafe for BayesianGaussianMixture<S>
where S: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V