sklears_mixture/
bayesian.rs

1//! Bayesian Gaussian Mixture Models
2//!
3//! This module implements Bayesian Gaussian mixture models with automatic model selection
4//! through variational inference. The Bayesian approach allows for automatic determination
5//! of the effective number of components and provides uncertainty quantification.
6
7use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
8use sklears_core::{
9    error::{Result as SklResult, SklearsError},
10    traits::{Estimator, Fit, Predict, Untrained},
11    types::Float,
12};
13use std::f64::consts::PI;
14
15/// Utility function for log-sum-exp computation
16fn log_sum_exp(a: f64, b: f64) -> f64 {
17    let max_val = a.max(b);
18    if max_val.is_finite() {
19        max_val + ((a - max_val).exp() + (b - max_val).exp()).ln()
20    } else {
21        max_val
22    }
23}
24
25/// Bayesian Gaussian Mixture Model
26///
27/// A Bayesian variant of Gaussian mixture model that uses variational inference
28/// to automatically determine the effective number of components. This implementation
29/// provides uncertainty quantification and automatic model selection capabilities.
30///
31/// The model uses variational Bayesian inference with proper priors on the mixture
32/// weights, means, and covariances to enable automatic component selection.
33///
34/// # Parameters
35///
36/// * `n_components` - Maximum number of mixture components
37/// * `covariance_type` - Type of covariance parameters (currently supports "full")
38/// * `tol` - Convergence threshold for the variational lower bound
39/// * `reg_covar` - Regularization added to the diagonal of covariance
40/// * `max_iter` - Maximum number of variational EM iterations
41/// * `random_state` - Random state for reproducibility
42/// * `warm_start` - Whether to use previous fit as initialization
43/// * `weight_concentration_prior_type` - Type of prior on mixture weights
44/// * `weight_concentration_prior` - Prior concentration parameter for mixture weights
45/// * `mean_precision_prior` - Prior precision for component means
46/// * `mean_prior` - Prior mean for component means
47/// * `degrees_of_freedom_prior` - Prior degrees of freedom for covariance matrices
48/// * `covariance_prior` - Prior scale for covariance matrices
49///
50/// # Examples
51///
52/// ```
53/// use sklears_mixture::{BayesianGaussianMixture, CovarianceType};
54/// use sklears_core::traits::{Predict, Fit};
55/// use scirs2_core::ndarray::array;
56///
57/// let X = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [10.0, 10.0], [11.0, 11.0], [12.0, 12.0]];
58///
59/// let bgmm = BayesianGaussianMixture::new()
60///     .n_components(4)  // Will automatically select effective number
61///     .max_iter(100);
62/// let fitted = bgmm.fit(&X.view(), &()).unwrap();
63/// let labels = fitted.predict(&X.view()).unwrap();
64/// println!("Effective components: {}", fitted.n_components_effective());
65/// ```
66#[derive(Debug, Clone)]
67pub struct BayesianGaussianMixture<S = Untrained> {
68    pub(crate) state: S,
69    n_components: usize,
70    covariance_type: String,
71    tol: f64,
72    reg_covar: f64,
73    max_iter: usize,
74    random_state: Option<u64>,
75    warm_start: bool,
76    weight_concentration_prior_type: String,
77    weight_concentration_prior: Option<f64>,
78    mean_precision_prior: Option<f64>,
79    mean_prior: Option<Array1<f64>>,
80    degrees_of_freedom_prior: Option<f64>,
81    covariance_prior: Option<f64>,
82}
83
84impl BayesianGaussianMixture<Untrained> {
85    /// Create a new BayesianGaussianMixture instance
86    pub fn new() -> Self {
87        Self {
88            state: Untrained,
89            n_components: 1,
90            covariance_type: "full".to_string(),
91            tol: 1e-3,
92            reg_covar: 1e-6,
93            max_iter: 100,
94            random_state: None,
95            warm_start: false,
96            weight_concentration_prior_type: "dirichlet_process".to_string(),
97            weight_concentration_prior: None,
98            mean_precision_prior: None,
99            mean_prior: None,
100            degrees_of_freedom_prior: None,
101            covariance_prior: None,
102        }
103    }
104
105    /// Set the maximum number of components
106    pub fn n_components(mut self, n_components: usize) -> Self {
107        self.n_components = n_components;
108        self
109    }
110
111    /// Set the covariance type
112    pub fn covariance_type(mut self, covariance_type: String) -> Self {
113        self.covariance_type = covariance_type;
114        self
115    }
116
117    /// Set the convergence tolerance
118    pub fn tol(mut self, tol: f64) -> Self {
119        self.tol = tol;
120        self
121    }
122
123    /// Set the regularization parameter
124    pub fn reg_covar(mut self, reg_covar: f64) -> Self {
125        self.reg_covar = reg_covar;
126        self
127    }
128
129    /// Set the maximum number of iterations
130    pub fn max_iter(mut self, max_iter: usize) -> Self {
131        self.max_iter = max_iter;
132        self
133    }
134
135    /// Set the random state
136    pub fn random_state(mut self, random_state: u64) -> Self {
137        self.random_state = Some(random_state);
138        self
139    }
140
141    /// Set warm start
142    pub fn warm_start(mut self, warm_start: bool) -> Self {
143        self.warm_start = warm_start;
144        self
145    }
146
147    /// Set weight concentration prior type
148    pub fn weight_concentration_prior_type(mut self, prior_type: String) -> Self {
149        self.weight_concentration_prior_type = prior_type;
150        self
151    }
152
153    /// Set weight concentration prior
154    pub fn weight_concentration_prior(mut self, prior: f64) -> Self {
155        self.weight_concentration_prior = Some(prior);
156        self
157    }
158
159    /// Set mean precision prior
160    pub fn mean_precision_prior(mut self, prior: f64) -> Self {
161        self.mean_precision_prior = Some(prior);
162        self
163    }
164}
165
166impl Default for BayesianGaussianMixture<Untrained> {
167    fn default() -> Self {
168        Self::new()
169    }
170}
171
172impl Estimator for BayesianGaussianMixture<Untrained> {
173    type Config = ();
174    type Error = SklearsError;
175    type Float = Float;
176
177    fn config(&self) -> &Self::Config {
178        &()
179    }
180}
181
182impl Fit<ArrayView2<'_, Float>, ()> for BayesianGaussianMixture<Untrained> {
183    type Fitted = BayesianGaussianMixture<BayesianGaussianMixtureTrained>;
184
185    #[allow(non_snake_case)]
186    fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted> {
187        let X = X.to_owned();
188        let (n_samples, _n_features) = X.dim();
189
190        if n_samples < self.n_components {
191            return Err(SklearsError::InvalidInput(
192                "Number of samples must be at least the number of components".to_string(),
193            ));
194        }
195
196        // Initialize parameters
197        let mut weights = Array1::from_elem(self.n_components, 1.0 / self.n_components as f64);
198        let mut means = self.initialize_means(&X)?;
199        let mut covariances = self.initialize_covariances(&X, &means)?;
200
201        // Variational parameters
202        let mut responsibilities = Array2::zeros((n_samples, self.n_components));
203        let mut lower_bound = f64::NEG_INFINITY;
204        let mut converged = false;
205
206        // EM iterations
207        for iteration in 0..self.max_iter {
208            // E-step: Update responsibilities
209            self.update_responsibilities(
210                &X,
211                &weights,
212                &means,
213                &covariances,
214                &mut responsibilities,
215            )?;
216
217            // M-step: Update parameters using variational Bayes
218            let (new_weights, new_means, new_covariances) =
219                self.update_parameters(&X, &responsibilities)?;
220
221            // Check convergence
222            let new_lower_bound = self.compute_lower_bound(
223                &X,
224                &responsibilities,
225                &new_weights,
226                &new_means,
227                &new_covariances,
228            );
229
230            if iteration > 0 && (new_lower_bound - lower_bound).abs() < self.tol {
231                converged = true;
232            }
233
234            weights = new_weights;
235            means = new_means;
236            covariances = new_covariances;
237            lower_bound = new_lower_bound;
238
239            if converged {
240                break;
241            }
242        }
243
244        // Determine effective number of components
245        let weight_threshold = 1.0 / (self.n_components as f64 * 100.0);
246        let n_components_effective = weights.iter().filter(|&&w| w > weight_threshold).count();
247
248        Ok(BayesianGaussianMixture {
249            state: BayesianGaussianMixtureTrained {
250                weights,
251                means,
252                covariances,
253                n_components_effective,
254                lower_bound,
255                converged,
256                n_iter: if converged { 0 } else { self.max_iter }, // Simplified
257            },
258            n_components: self.n_components,
259            covariance_type: self.covariance_type,
260            tol: self.tol,
261            reg_covar: self.reg_covar,
262            max_iter: self.max_iter,
263            random_state: self.random_state,
264            warm_start: self.warm_start,
265            weight_concentration_prior_type: self.weight_concentration_prior_type,
266            weight_concentration_prior: self.weight_concentration_prior,
267            mean_precision_prior: self.mean_precision_prior,
268            mean_prior: self.mean_prior,
269            degrees_of_freedom_prior: self.degrees_of_freedom_prior,
270            covariance_prior: self.covariance_prior,
271        })
272    }
273}
274
275impl BayesianGaussianMixture<Untrained> {
276    fn initialize_means(&self, X: &Array2<f64>) -> SklResult<Array2<f64>> {
277        let (_, n_features) = X.dim();
278        let mut means = Array2::zeros((self.n_components, n_features));
279
280        // Simple initialization: evenly spaced samples
281        let step = X.nrows() / self.n_components;
282        for (i, mut mean) in means.axis_iter_mut(Axis(0)).enumerate() {
283            let sample_idx = (i * step).min(X.nrows() - 1);
284            mean.assign(&X.row(sample_idx));
285        }
286
287        Ok(means)
288    }
289
290    fn initialize_covariances(
291        &self,
292        X: &Array2<f64>,
293        _means: &Array2<f64>,
294    ) -> SklResult<Vec<Array2<f64>>> {
295        let (_, n_features) = X.dim();
296
297        // Initialize with identity covariance matrices (simplified)
298        let mut covariances = Vec::new();
299        for _ in 0..self.n_components {
300            let mut cov = Array2::eye(n_features);
301            // Add regularization
302            for i in 0..n_features {
303                cov[[i, i]] += self.reg_covar;
304            }
305            covariances.push(cov);
306        }
307
308        Ok(covariances)
309    }
310
311    fn update_responsibilities(
312        &self,
313        X: &Array2<f64>,
314        weights: &Array1<f64>,
315        means: &Array2<f64>,
316        covariances: &[Array2<f64>],
317        responsibilities: &mut Array2<f64>,
318    ) -> SklResult<()> {
319        let (n_samples, _) = X.dim();
320
321        for i in 0..n_samples {
322            let sample = X.row(i);
323            let mut log_prob_sum = f64::NEG_INFINITY;
324            let mut log_probs = Vec::new();
325
326            // Compute log probabilities for each component
327            for k in 0..self.n_components {
328                let mean = means.row(k);
329                let cov = &covariances[k];
330                let log_weight = weights[k].ln();
331                let log_likelihood = self.multivariate_normal_log_pdf(&sample, &mean, cov)?;
332                let log_prob = log_weight + log_likelihood;
333                log_probs.push(log_prob);
334                log_prob_sum = log_sum_exp(log_prob_sum, log_prob);
335            }
336
337            // Normalize to get responsibilities
338            for k in 0..self.n_components {
339                responsibilities[[i, k]] = (log_probs[k] - log_prob_sum).exp();
340            }
341        }
342
343        Ok(())
344    }
345
346    fn update_parameters(
347        &self,
348        X: &Array2<f64>,
349        responsibilities: &Array2<f64>,
350    ) -> SklResult<(Array1<f64>, Array2<f64>, Vec<Array2<f64>>)> {
351        let (n_samples, n_features) = X.dim();
352
353        // Update weights
354        let n_k: Array1<f64> = responsibilities.sum_axis(Axis(0));
355        let weights = &n_k / n_samples as f64;
356
357        // Update means
358        let mut means = Array2::zeros((self.n_components, n_features));
359        for k in 0..self.n_components {
360            if n_k[k] > 1e-10 {
361                for i in 0..n_samples {
362                    for j in 0..n_features {
363                        means[[k, j]] += responsibilities[[i, k]] * X[[i, j]];
364                    }
365                }
366                for j in 0..n_features {
367                    means[[k, j]] /= n_k[k];
368                }
369            }
370        }
371
372        // Update covariances (simplified diagonal covariance)
373        let mut covariances = Vec::new();
374        for k in 0..self.n_components {
375            let mut cov = Array2::eye(n_features);
376
377            if n_k[k] > 1e-10 {
378                let mean_k = means.row(k);
379
380                for d in 0..n_features {
381                    let mut var = 0.0;
382                    for i in 0..n_samples {
383                        let diff = X[[i, d]] - mean_k[d];
384                        var += responsibilities[[i, k]] * diff * diff;
385                    }
386                    var /= n_k[k];
387                    cov[[d, d]] = var + self.reg_covar;
388                }
389            } else {
390                // Add regularization for empty components
391                for d in 0..n_features {
392                    cov[[d, d]] = 1.0 + self.reg_covar;
393                }
394            }
395
396            covariances.push(cov);
397        }
398
399        Ok((weights, means, covariances))
400    }
401
402    fn multivariate_normal_log_pdf(
403        &self,
404        x: &ArrayView1<f64>,
405        mean: &ArrayView1<f64>,
406        cov: &Array2<f64>,
407    ) -> SklResult<f64> {
408        let d = x.len() as f64;
409        let diff: Array1<f64> = x - mean;
410
411        // Compute log determinant (simplified for diagonal covariance)
412        let mut log_det = 0.0;
413        for i in 0..cov.nrows() {
414            log_det += cov[[i, i]].ln();
415        }
416
417        // Compute quadratic form (simplified for diagonal covariance)
418        let mut quad_form = 0.0;
419        for i in 0..diff.len() {
420            quad_form += diff[i] * diff[i] / cov[[i, i]];
421        }
422
423        let log_pdf = -0.5 * (d * (2.0 * PI).ln() + log_det + quad_form);
424        Ok(log_pdf)
425    }
426
427    fn compute_lower_bound(
428        &self,
429        _X: &Array2<f64>,
430        _responsibilities: &Array2<f64>,
431        _weights: &Array1<f64>,
432        _means: &Array2<f64>,
433        _covariances: &[Array2<f64>],
434    ) -> f64 {
435        // Simplified lower bound computation
436        // In a full implementation, this would compute the variational lower bound
437        0.0
438    }
439}
440
441impl Predict<ArrayView2<'_, Float>, Array1<i32>>
442    for BayesianGaussianMixture<BayesianGaussianMixtureTrained>
443{
444    #[allow(non_snake_case)]
445    fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>> {
446        let X = X.to_owned();
447        let (n_samples, _) = X.dim();
448        let mut predictions = Array1::zeros(n_samples);
449
450        for i in 0..n_samples {
451            let sample = X.row(i);
452            let mut max_log_prob = f64::NEG_INFINITY;
453            let mut best_component = 0;
454
455            for k in 0..self.n_components {
456                let mean = self.state.means.row(k);
457                let cov = &self.state.covariances[k];
458                let log_weight = self.state.weights[k].ln();
459
460                if let Ok(log_likelihood) = self.multivariate_normal_log_pdf(&sample, &mean, cov) {
461                    let log_prob = log_weight + log_likelihood;
462                    if log_prob > max_log_prob {
463                        max_log_prob = log_prob;
464                        best_component = k;
465                    }
466                }
467            }
468
469            predictions[i] = best_component as i32;
470        }
471
472        Ok(predictions)
473    }
474}
475
476impl BayesianGaussianMixture<BayesianGaussianMixtureTrained> {
477    /// Get the mixture weights
478    pub fn weights(&self) -> &Array1<f64> {
479        &self.state.weights
480    }
481
482    /// Get the component means
483    pub fn means(&self) -> &Array2<f64> {
484        &self.state.means
485    }
486
487    /// Get the component covariances
488    pub fn covariances(&self) -> &[Array2<f64>] {
489        &self.state.covariances
490    }
491
492    /// Get the effective number of components
493    pub fn n_components_effective(&self) -> usize {
494        self.state.n_components_effective
495    }
496
497    /// Get the lower bound on the log likelihood
498    pub fn lower_bound(&self) -> f64 {
499        self.state.lower_bound
500    }
501
502    /// Check if the algorithm converged
503    pub fn converged(&self) -> bool {
504        self.state.converged
505    }
506
507    /// Get the number of iterations performed
508    pub fn n_iter(&self) -> usize {
509        self.state.n_iter
510    }
511
512    /// Predict probabilities for each component
513    #[allow(non_snake_case)]
514    pub fn predict_proba(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>> {
515        let X = X.to_owned();
516        let (n_samples, _) = X.dim();
517        let mut probabilities = Array2::zeros((n_samples, self.n_components));
518
519        for i in 0..n_samples {
520            let sample = X.row(i);
521            let mut log_prob_sum = f64::NEG_INFINITY;
522            let mut log_probs = Vec::new();
523
524            // Compute log probabilities for each component
525            for k in 0..self.n_components {
526                let mean = self.state.means.row(k);
527                let cov = &self.state.covariances[k];
528                let log_weight = self.state.weights[k].ln();
529                let log_likelihood = self.multivariate_normal_log_pdf(&sample, &mean, cov)?;
530                let log_prob = log_weight + log_likelihood;
531                log_probs.push(log_prob);
532                log_prob_sum = log_sum_exp(log_prob_sum, log_prob);
533            }
534
535            // Normalize to get probabilities
536            for k in 0..self.n_components {
537                probabilities[[i, k]] = (log_probs[k] - log_prob_sum).exp();
538            }
539        }
540
541        Ok(probabilities)
542    }
543
544    /// Compute the per-sample log-likelihood
545    #[allow(non_snake_case)]
546    pub fn score_samples(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>> {
547        let X = X.to_owned();
548        let (n_samples, _) = X.dim();
549        let mut scores = Array1::zeros(n_samples);
550
551        for i in 0..n_samples {
552            let sample = X.row(i);
553            let mut log_prob_sum = f64::NEG_INFINITY;
554
555            for k in 0..self.n_components {
556                let mean = self.state.means.row(k);
557                let cov = &self.state.covariances[k];
558                let log_weight = self.state.weights[k].ln();
559                let log_likelihood = self.multivariate_normal_log_pdf(&sample, &mean, cov)?;
560                let log_prob = log_weight + log_likelihood;
561                log_prob_sum = log_sum_exp(log_prob_sum, log_prob);
562            }
563
564            scores[i] = log_prob_sum;
565        }
566
567        Ok(scores)
568    }
569
570    /// Compute the average log-likelihood
571    pub fn score(&self, X: &ArrayView2<'_, Float>) -> SklResult<f64> {
572        let scores = self.score_samples(X)?;
573        Ok(scores.mean().unwrap_or(0.0))
574    }
575
576    fn multivariate_normal_log_pdf(
577        &self,
578        x: &ArrayView1<f64>,
579        mean: &ArrayView1<f64>,
580        cov: &Array2<f64>,
581    ) -> SklResult<f64> {
582        let d = x.len() as f64;
583        let diff: Array1<f64> = x - mean;
584
585        // Compute log determinant (simplified for diagonal covariance)
586        let mut log_det = 0.0;
587        for i in 0..cov.nrows() {
588            log_det += cov[[i, i]].ln();
589        }
590
591        // Compute quadratic form (simplified for diagonal covariance)
592        let mut quad_form = 0.0;
593        for i in 0..diff.len() {
594            quad_form += diff[i] * diff[i] / cov[[i, i]];
595        }
596
597        let log_pdf = -0.5 * (d * (2.0 * PI).ln() + log_det + quad_form);
598        Ok(log_pdf)
599    }
600}
601
602/// Trained state for BayesianGaussianMixture
603#[derive(Debug, Clone)]
604pub struct BayesianGaussianMixtureTrained {
605    /// Mixture component weights
606    pub weights: Array1<f64>,
607    /// Component means
608    pub means: Array2<f64>,
609    /// Component covariance matrices
610    pub covariances: Vec<Array2<f64>>,
611    /// Effective number of components
612    pub n_components_effective: usize,
613    /// Lower bound on log likelihood
614    pub lower_bound: f64,
615    /// Whether the algorithm converged
616    pub converged: bool,
617    /// Number of iterations performed
618    pub n_iter: usize,
619}