pub struct QuantumKernelApproximation<State = Untrained> { /* private fields */ }Expand description
Quantum Kernel Approximation
Simulates quantum feature maps using classical computation to approximate quantum kernels. The quantum kernel is defined as:
K(x, x’) = |⟨φ(x)|φ(x’)⟩|²
where |φ(x)⟩ is a quantum feature map encoding classical data x.
§Mathematical Background
Quantum feature maps encode classical data into quantum states:
- Pauli-Z: U(x) = exp(-i Σ_j x_j Z_j)
- Pauli-ZZ: U(x) = exp(-i Σ_{j,k} (π - x_j)(π - x_k) Z_j Z_k)
- Amplitude: |ψ⟩ = Σ_i √(x_i/||x||) |i⟩
The resulting kernel often provides exponential feature space dimension advantages over classical kernels for certain problems.
§Examples
ⓘ
use sklears_kernel_approximation::quantum_kernel_methods::{QuantumKernelApproximation, QuantumKernelConfig};
use scirs2_core::ndarray::array;
use sklears_core::traits::{Fit, Transform};
let config = QuantumKernelConfig::default();
let qkernel = QuantumKernelApproximation::new(config);
let X = array![[1.0, 2.0], [3.0, 4.0]];
let fitted = qkernel.fit(&X, &()).unwrap();
let features = fitted.transform(&X).unwrap();Implementations§
Source§impl QuantumKernelApproximation<Untrained>
impl QuantumKernelApproximation<Untrained>
Sourcepub fn new(config: QuantumKernelConfig) -> Self
pub fn new(config: QuantumKernelConfig) -> Self
Create a new quantum kernel approximation
Sourcepub fn with_qubits(n_qubits: usize) -> Self
pub fn with_qubits(n_qubits: usize) -> Self
Create with default configuration
Sourcepub fn feature_map(self, feature_map: QuantumFeatureMap) -> Self
pub fn feature_map(self, feature_map: QuantumFeatureMap) -> Self
Set feature map type
Sourcepub fn circuit_depth(self, depth: usize) -> Self
pub fn circuit_depth(self, depth: usize) -> Self
Set circuit depth
Sourcepub fn entanglement(self, pattern: EntanglementPattern) -> Self
pub fn entanglement(self, pattern: EntanglementPattern) -> Self
Set entanglement pattern
Trait Implementations§
Source§impl<State: Clone> Clone for QuantumKernelApproximation<State>
impl<State: Clone> Clone for QuantumKernelApproximation<State>
Source§fn clone(&self) -> QuantumKernelApproximation<State>
fn clone(&self) -> QuantumKernelApproximation<State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<State: Debug> Debug for QuantumKernelApproximation<State>
impl<State: Debug> Debug for QuantumKernelApproximation<State>
Source§impl Estimator for QuantumKernelApproximation<Untrained>
impl Estimator for QuantumKernelApproximation<Untrained>
Source§type Config = QuantumKernelConfig
type Config = QuantumKernelConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for QuantumKernelApproximation<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for QuantumKernelApproximation<Untrained>
Source§type Fitted = QuantumKernelApproximation<Trained>
type Fitted = QuantumKernelApproximation<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<State> Freeze for QuantumKernelApproximation<State>
impl<State> RefUnwindSafe for QuantumKernelApproximation<State>where
State: RefUnwindSafe,
impl<State> Send for QuantumKernelApproximation<State>where
State: Send,
impl<State> Sync for QuantumKernelApproximation<State>where
State: Sync,
impl<State> Unpin for QuantumKernelApproximation<State>where
State: Unpin,
impl<State> UnwindSafe for QuantumKernelApproximation<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features