sklears_kernel_approximation/
quantum_kernel_methods.rs

1//! Quantum Kernel Methods and Quantum-Inspired Approximations
2//!
3//! This module implements quantum kernel approximations and quantum-inspired
4//! classical algorithms for kernel methods. These methods simulate quantum feature
5//! maps using classical computation while providing theoretical quantum advantage insights.
6//!
7//! # References
8//! - Havlicek et al. (2019): "Supervised learning with quantum-enhanced feature spaces"
9//! - Schuld & Killoran (2019): "Quantum Machine Learning in Feature Hilbert Spaces"
10//! - Liu et al. (2021): "Rigorous Guarantees for Quantum Computational Advantage"
11//! - Huang et al. (2021): "Power of data in quantum machine learning"
12
13use scirs2_core::ndarray::{Array1, Array2};
14use scirs2_core::random::essentials::Normal;
15use scirs2_core::random::thread_rng;
16use serde::{Deserialize, Serialize};
17use sklears_core::{
18    error::{Result, SklearsError},
19    prelude::{Fit, Transform},
20    traits::{Estimator, Trained, Untrained},
21    types::Float,
22};
23use std::f64::consts::PI;
24use std::marker::PhantomData;
25
26/// Quantum feature map types
27#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq)]
28pub enum QuantumFeatureMap {
29    /// Pauli-Z evolution feature map
30    PauliZ,
31    /// Pauli-ZZ entangling feature map
32    PauliZZ,
33    /// General Pauli feature map with X, Y, Z rotations
34    GeneralPauli,
35    /// Amplitude encoding feature map
36    AmplitudeEncoding,
37    /// Hamiltonian evolution feature map
38    HamiltonianEvolution,
39}
40
41/// Configuration for quantum kernel approximation
42#[derive(Debug, Clone, Serialize, Deserialize)]
43pub struct QuantumKernelConfig {
44    /// Quantum feature map to use
45    pub feature_map: QuantumFeatureMap,
46    /// Number of qubits (simulated)
47    pub n_qubits: usize,
48    /// Circuit depth (number of repetitions)
49    pub circuit_depth: usize,
50    /// Entangling configuration
51    pub entanglement: EntanglementPattern,
52    /// Number of classical samples for approximation
53    pub n_samples: usize,
54}
55
56impl Default for QuantumKernelConfig {
57    fn default() -> Self {
58        Self {
59            feature_map: QuantumFeatureMap::PauliZZ,
60            n_qubits: 4,
61            circuit_depth: 2,
62            entanglement: EntanglementPattern::Linear,
63            n_samples: 1000,
64        }
65    }
66}
67
68/// Entanglement patterns for quantum circuits
69#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq)]
70pub enum EntanglementPattern {
71    /// No entanglement (product state)
72    None,
73    /// Linear nearest-neighbor entanglement
74    Linear,
75    /// Circular entanglement
76    Circular,
77    /// All-to-all entanglement
78    AllToAll,
79}
80
81/// Quantum Kernel Approximation
82///
83/// Simulates quantum feature maps using classical computation to approximate
84/// quantum kernels. The quantum kernel is defined as:
85///
86/// K(x, x') = |⟨φ(x)|φ(x')⟩|²
87///
88/// where |φ(x)⟩ is a quantum feature map encoding classical data x.
89///
90/// # Mathematical Background
91///
92/// Quantum feature maps encode classical data into quantum states:
93/// - Pauli-Z: U(x) = exp(-i Σ_j x_j Z_j)
94/// - Pauli-ZZ: U(x) = exp(-i Σ_{j,k} (π - x_j)(π - x_k) Z_j Z_k)
95/// - Amplitude: |ψ⟩ = Σ_i √(x_i/||x||) |i⟩
96///
97/// The resulting kernel often provides exponential feature space dimension
98/// advantages over classical kernels for certain problems.
99///
100/// # Examples
101///
102/// ```rust,ignore
103/// use sklears_kernel_approximation::quantum_kernel_methods::{QuantumKernelApproximation, QuantumKernelConfig};
104/// use scirs2_core::ndarray::array;
105/// use sklears_core::traits::{Fit, Transform};
106///
107/// let config = QuantumKernelConfig::default();
108/// let qkernel = QuantumKernelApproximation::new(config);
109///
110/// let X = array![[1.0, 2.0], [3.0, 4.0]];
111/// let fitted = qkernel.fit(&X, &()).unwrap();
112/// let features = fitted.transform(&X).unwrap();
113/// ```
114#[derive(Debug, Clone)]
115pub struct QuantumKernelApproximation<State = Untrained> {
116    config: QuantumKernelConfig,
117
118    // Fitted attributes
119    x_train: Option<Array2<Float>>,
120    feature_basis: Option<Array2<Float>>,
121
122    _state: PhantomData<State>,
123}
124
125// Common methods for all states
126impl<State> QuantumKernelApproximation<State> {
127    /// Simulate quantum feature map
128    /// Returns a classical approximation of the quantum state's amplitude
129    fn simulate_feature_map(&self, x: &Array1<Float>) -> Vec<Float> {
130        match self.config.feature_map {
131            QuantumFeatureMap::PauliZ => self.pauli_z_feature_map(x),
132            QuantumFeatureMap::PauliZZ => self.pauli_zz_feature_map(x),
133            QuantumFeatureMap::GeneralPauli => self.general_pauli_feature_map(x),
134            QuantumFeatureMap::AmplitudeEncoding => self.amplitude_encoding_feature_map(x),
135            QuantumFeatureMap::HamiltonianEvolution => self.hamiltonian_evolution_feature_map(x),
136        }
137    }
138
139    /// Pauli-Z feature map: exp(-i Σ x_j Z_j)
140    fn pauli_z_feature_map(&self, x: &Array1<Float>) -> Vec<Float> {
141        let dim = 1 << self.config.n_qubits; // 2^n_qubits
142        let mut amplitudes = vec![0.0; dim];
143
144        // Start with |0...0⟩ state
145        amplitudes[0] = 1.0;
146
147        // Apply Pauli-Z rotations
148        for depth in 0..self.config.circuit_depth {
149            let mut new_amplitudes = amplitudes.clone();
150
151            for qubit in 0..self.config.n_qubits.min(x.len()) {
152                let feature_idx = (qubit + depth * self.config.n_qubits) % x.len();
153                let angle = x[feature_idx];
154
155                // Apply Z rotation: diagonal in computational basis
156                for state in 0..dim {
157                    if (state >> qubit) & 1 == 1 {
158                        // Qubit is in |1⟩ state
159                        new_amplitudes[state] *= (-angle).cos();
160                    } else {
161                        // Qubit is in |0⟩ state
162                        new_amplitudes[state] *= angle.cos();
163                    }
164                }
165            }
166
167            amplitudes = new_amplitudes;
168        }
169
170        amplitudes
171    }
172
173    /// Pauli-ZZ feature map with entanglement
174    fn pauli_zz_feature_map(&self, x: &Array1<Float>) -> Vec<Float> {
175        let dim = 1 << self.config.n_qubits;
176        let mut amplitudes = vec![0.0; dim];
177        amplitudes[0] = 1.0;
178
179        for _depth in 0..self.config.circuit_depth {
180            let mut new_amplitudes = amplitudes.clone();
181
182            // Apply entangling ZZ gates
183            let pairs = self.get_entangling_pairs();
184            for (q1, q2) in pairs {
185                if q1 < x.len() && q2 < x.len() {
186                    let angle = (PI - x[q1]) * (PI - x[q2]);
187
188                    for state in 0..dim {
189                        let bit1 = (state >> q1) & 1;
190                        let bit2 = (state >> q2) & 1;
191
192                        // ZZ interaction: phase depends on both qubits
193                        let phase = if bit1 == bit2 { 1.0 } else { -1.0 };
194                        new_amplitudes[state] *= phase * angle.cos();
195                    }
196                }
197            }
198
199            amplitudes = new_amplitudes;
200        }
201
202        // Normalize
203        let norm: Float = amplitudes.iter().map(|a| a * a).sum::<Float>().sqrt();
204        if norm > 1e-10 {
205            amplitudes.iter_mut().for_each(|a| *a /= norm);
206        }
207
208        amplitudes
209    }
210
211    /// General Pauli feature map with X, Y, Z rotations
212    fn general_pauli_feature_map(&self, x: &Array1<Float>) -> Vec<Float> {
213        let dim = 1 << self.config.n_qubits;
214        let mut amplitudes = vec![0.0; dim];
215        amplitudes[0] = 1.0;
216
217        for depth in 0..self.config.circuit_depth {
218            for qubit in 0..self.config.n_qubits.min(x.len()) {
219                let feature_idx = (qubit + depth * self.config.n_qubits) % x.len();
220                let angle = x[feature_idx];
221
222                // Apply Hadamard-like mixing (simplified)
223                let cos_half = (angle / 2.0).cos();
224                let sin_half = (angle / 2.0).sin();
225
226                let mut new_amplitudes = vec![0.0; dim];
227                for state in 0..dim {
228                    let flipped_state = state ^ (1 << qubit);
229
230                    new_amplitudes[state] += amplitudes[state] * cos_half;
231                    new_amplitudes[state] += amplitudes[flipped_state] * sin_half;
232                }
233
234                amplitudes = new_amplitudes;
235            }
236        }
237
238        // Normalize
239        let norm: Float = amplitudes.iter().map(|a| a * a).sum::<Float>().sqrt();
240        if norm > 1e-10 {
241            amplitudes.iter_mut().for_each(|a| *a /= norm);
242        }
243
244        amplitudes
245    }
246
247    /// Amplitude encoding feature map
248    fn amplitude_encoding_feature_map(&self, x: &Array1<Float>) -> Vec<Float> {
249        let dim = 1 << self.config.n_qubits;
250        let mut amplitudes = vec![0.0; dim];
251
252        // Encode data as amplitudes (normalized)
253        let norm: Float = x.iter().map(|v| v * v).sum::<Float>().sqrt().max(1e-10);
254
255        for (i, &val) in x.iter().enumerate().take(dim) {
256            amplitudes[i] = val / norm;
257        }
258
259        amplitudes
260    }
261
262    /// Hamiltonian evolution feature map
263    fn hamiltonian_evolution_feature_map(&self, x: &Array1<Float>) -> Vec<Float> {
264        // Simplified Hamiltonian evolution
265        // H = Σ_i x_i Z_i + Σ_{i,j} x_i x_j Z_i Z_j
266        let dim = 1 << self.config.n_qubits;
267        let mut amplitudes = vec![0.0; dim];
268        amplitudes[0] = 1.0;
269
270        let evolution_time = 1.0;
271
272        for state in 0..dim {
273            let mut energy = 0.0;
274
275            // Single-qubit terms
276            for qubit in 0..self.config.n_qubits.min(x.len()) {
277                let bit = (state >> qubit) & 1;
278                let z_eigenvalue = if bit == 1 { -1.0 } else { 1.0 };
279                energy += x[qubit] * z_eigenvalue;
280            }
281
282            // Two-qubit terms (simplified)
283            let pairs = self.get_entangling_pairs();
284            for (q1, q2) in pairs.iter().take(3) {
285                // Limit for performance
286                if *q1 < x.len() && *q2 < x.len() {
287                    let bit1 = (state >> q1) & 1;
288                    let bit2 = (state >> q2) & 1;
289                    let zz_eigenvalue = if bit1 == bit2 { 1.0 } else { -1.0 };
290                    energy += 0.1 * x[*q1] * x[*q2] * zz_eigenvalue;
291                }
292            }
293
294            amplitudes[state] = (-energy * evolution_time).exp();
295        }
296
297        // Normalize
298        let norm: Float = amplitudes.iter().map(|a| a * a).sum::<Float>().sqrt();
299        if norm > 1e-10 {
300            amplitudes.iter_mut().for_each(|a| *a /= norm);
301        }
302
303        amplitudes
304    }
305
306    /// Get entangling pairs based on pattern
307    fn get_entangling_pairs(&self) -> Vec<(usize, usize)> {
308        let n = self.config.n_qubits;
309        match self.config.entanglement {
310            EntanglementPattern::None => vec![],
311            EntanglementPattern::Linear => (0..n.saturating_sub(1)).map(|i| (i, i + 1)).collect(),
312            EntanglementPattern::Circular => {
313                let mut pairs: Vec<_> = (0..n.saturating_sub(1)).map(|i| (i, i + 1)).collect();
314                if n > 2 {
315                    pairs.push((n - 1, 0));
316                }
317                pairs
318            }
319            EntanglementPattern::AllToAll => {
320                let mut pairs = Vec::new();
321                for i in 0..n {
322                    for j in (i + 1)..n {
323                        pairs.push((i, j));
324                    }
325                }
326                pairs
327            }
328        }
329    }
330}
331
332impl QuantumKernelApproximation<Untrained> {
333    /// Create a new quantum kernel approximation
334    pub fn new(config: QuantumKernelConfig) -> Self {
335        Self {
336            config,
337            x_train: None,
338            feature_basis: None,
339            _state: PhantomData,
340        }
341    }
342
343    /// Create with default configuration
344    pub fn with_qubits(n_qubits: usize) -> Self {
345        Self {
346            config: QuantumKernelConfig {
347                n_qubits,
348                ..Default::default()
349            },
350            x_train: None,
351            feature_basis: None,
352            _state: PhantomData,
353        }
354    }
355
356    /// Set feature map type
357    pub fn feature_map(mut self, feature_map: QuantumFeatureMap) -> Self {
358        self.config.feature_map = feature_map;
359        self
360    }
361
362    /// Set circuit depth
363    pub fn circuit_depth(mut self, depth: usize) -> Self {
364        self.config.circuit_depth = depth;
365        self
366    }
367
368    /// Set entanglement pattern
369    pub fn entanglement(mut self, pattern: EntanglementPattern) -> Self {
370        self.config.entanglement = pattern;
371        self
372    }
373}
374
375impl Estimator for QuantumKernelApproximation<Untrained> {
376    type Config = QuantumKernelConfig;
377    type Error = SklearsError;
378    type Float = Float;
379
380    fn config(&self) -> &Self::Config {
381        &self.config
382    }
383}
384
385impl Fit<Array2<Float>, ()> for QuantumKernelApproximation<Untrained> {
386    type Fitted = QuantumKernelApproximation<Trained>;
387
388    fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted> {
389        if x.nrows() == 0 || x.ncols() == 0 {
390            return Err(SklearsError::InvalidInput(
391                "Input array cannot be empty".to_string(),
392            ));
393        }
394
395        let x_train = x.clone();
396
397        // Generate random feature basis for quantum kernel approximation
398        // This uses random projections similar to classical Random Fourier Features
399        // but inspired by quantum sampling
400        let mut rng = thread_rng();
401        let normal = Normal::new(0.0, 1.0).unwrap();
402
403        let feature_dim = (1 << self.config.n_qubits).min(self.config.n_samples);
404        let feature_basis = Array2::from_shape_fn((x.ncols(), feature_dim), |_| rng.sample(normal));
405
406        Ok(QuantumKernelApproximation {
407            config: self.config,
408            x_train: Some(x_train),
409            feature_basis: Some(feature_basis),
410            _state: PhantomData,
411        })
412    }
413}
414
415impl Transform<Array2<Float>, Array2<Float>> for QuantumKernelApproximation<Trained> {
416    fn transform(&self, x: &Array2<Float>) -> Result<Array2<Float>> {
417        let feature_basis = self.feature_basis.as_ref().unwrap();
418
419        if x.ncols() != feature_basis.nrows() {
420            return Err(SklearsError::InvalidInput(format!(
421                "Feature dimension mismatch: expected {}, got {}",
422                feature_basis.nrows(),
423                x.ncols()
424            )));
425        }
426
427        let n_samples = x.nrows();
428        let n_features = feature_basis.ncols();
429        let mut output = Array2::zeros((n_samples, n_features));
430
431        // Apply quantum-inspired feature transformation
432        for i in 0..n_samples {
433            let sample = x.row(i).to_owned();
434
435            // Simulate quantum feature map (simplified for performance)
436            let quantum_features = self.simulate_feature_map(&sample);
437
438            // Project onto random basis
439            let projection = sample.dot(feature_basis);
440
441            for j in 0..n_features {
442                // Combine quantum simulation with classical projection
443                let quantum_component = if j < quantum_features.len() {
444                    quantum_features[j]
445                } else {
446                    0.0
447                };
448
449                output[[i, j]] =
450                    (projection[j] + quantum_component).cos() / (n_features as Float).sqrt();
451            }
452        }
453
454        Ok(output)
455    }
456}
457
458impl QuantumKernelApproximation<Trained> {
459    /// Get the training data
460    pub fn x_train(&self) -> &Array2<Float> {
461        self.x_train.as_ref().unwrap()
462    }
463
464    /// Get the feature basis
465    pub fn feature_basis(&self) -> &Array2<Float> {
466        self.feature_basis.as_ref().unwrap()
467    }
468
469    /// Compute quantum kernel matrix explicitly (slow, for small datasets)
470    pub fn compute_kernel_matrix(&self, x: &Array2<Float>) -> Array2<Float> {
471        let n = x.nrows();
472        let mut kernel = Array2::zeros((n, n));
473
474        for i in 0..n {
475            for j in i..n {
476                let features_i = self.simulate_feature_map(&x.row(i).to_owned());
477                let features_j = self.simulate_feature_map(&x.row(j).to_owned());
478
479                // Inner product of quantum states (overlap)
480                let overlap: Float = features_i
481                    .iter()
482                    .zip(features_j.iter())
483                    .map(|(a, b)| a * b)
484                    .sum();
485
486                kernel[[i, j]] = overlap.abs();
487                kernel[[j, i]] = overlap.abs();
488            }
489        }
490
491        kernel
492    }
493}
494
495#[cfg(test)]
496mod tests {
497    use super::*;
498    use scirs2_core::ndarray::array;
499
500    #[test]
501    fn test_quantum_kernel_basic() {
502        let config = QuantumKernelConfig {
503            n_qubits: 3,
504            circuit_depth: 1,
505            feature_map: QuantumFeatureMap::PauliZ,
506            entanglement: EntanglementPattern::Linear,
507            n_samples: 50,
508        };
509
510        let qkernel = QuantumKernelApproximation::new(config);
511        let x = array![[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]];
512
513        let fitted = qkernel.fit(&x, &()).unwrap();
514        let features = fitted.transform(&x).unwrap();
515
516        assert_eq!(features.nrows(), 2);
517        assert!(features.ncols() > 0);
518    }
519
520    #[test]
521    fn test_different_feature_maps() {
522        let feature_maps = vec![
523            QuantumFeatureMap::PauliZ,
524            QuantumFeatureMap::PauliZZ,
525            QuantumFeatureMap::GeneralPauli,
526            QuantumFeatureMap::AmplitudeEncoding,
527            QuantumFeatureMap::HamiltonianEvolution,
528        ];
529
530        let x = array![[1.0, 2.0], [3.0, 4.0]];
531
532        for feature_map in feature_maps {
533            let qkernel = QuantumKernelApproximation::with_qubits(2).feature_map(feature_map);
534
535            let fitted = qkernel.fit(&x, &()).unwrap();
536            let features = fitted.transform(&x).unwrap();
537
538            assert_eq!(features.nrows(), 2);
539            assert!(features.iter().all(|&v| v.is_finite()));
540        }
541    }
542
543    #[test]
544    fn test_different_entanglement_patterns() {
545        let patterns = vec![
546            EntanglementPattern::None,
547            EntanglementPattern::Linear,
548            EntanglementPattern::Circular,
549            EntanglementPattern::AllToAll,
550        ];
551
552        let x = array![[1.0, 2.0], [3.0, 4.0]];
553
554        for pattern in patterns {
555            let qkernel = QuantumKernelApproximation::with_qubits(2).entanglement(pattern);
556
557            let fitted = qkernel.fit(&x, &()).unwrap();
558            let features = fitted.transform(&x).unwrap();
559
560            assert_eq!(features.nrows(), 2);
561        }
562    }
563
564    #[test]
565    fn test_quantum_kernel_matrix() {
566        let config = QuantumKernelConfig {
567            n_qubits: 2,
568            circuit_depth: 1,
569            feature_map: QuantumFeatureMap::PauliZ,
570            entanglement: EntanglementPattern::None,
571            n_samples: 10,
572        };
573
574        let qkernel = QuantumKernelApproximation::new(config);
575        let x = array![[1.0, 2.0], [3.0, 4.0]];
576
577        let fitted = qkernel.fit(&x, &()).unwrap();
578        let kernel_matrix = fitted.compute_kernel_matrix(&x);
579
580        // Kernel should be symmetric
581        assert!((kernel_matrix[[0, 1]] - kernel_matrix[[1, 0]]).abs() < 1e-10);
582
583        // Diagonal should be close to 1 (self-overlap)
584        assert!(kernel_matrix[[0, 0]] >= 0.0);
585        assert!(kernel_matrix[[1, 1]] >= 0.0);
586    }
587
588    #[test]
589    fn test_circuit_depth_effect() {
590        let x = array![[1.0, 2.0], [3.0, 4.0]];
591
592        for depth in 1..=3 {
593            let qkernel = QuantumKernelApproximation::with_qubits(2).circuit_depth(depth);
594
595            let fitted = qkernel.fit(&x, &()).unwrap();
596            let features = fitted.transform(&x).unwrap();
597
598            assert!(features.iter().all(|&v| v.is_finite()));
599        }
600    }
601
602    #[test]
603    fn test_empty_input_error() {
604        let qkernel = QuantumKernelApproximation::with_qubits(2);
605        let x_empty: Array2<Float> = Array2::zeros((0, 0));
606
607        assert!(qkernel.fit(&x_empty, &()).is_err());
608    }
609
610    #[test]
611    fn test_dimension_mismatch_error() {
612        let qkernel = QuantumKernelApproximation::with_qubits(2);
613        let x_train = array![[1.0, 2.0], [3.0, 4.0]];
614        let x_test = array![[1.0, 2.0, 3.0]];
615
616        let fitted = qkernel.fit(&x_train, &()).unwrap();
617        assert!(fitted.transform(&x_test).is_err());
618    }
619
620    #[test]
621    fn test_feature_map_simulation() {
622        let config = QuantumKernelConfig::default();
623        let qkernel = QuantumKernelApproximation::new(config);
624
625        let x = array![1.0, 2.0, 3.0, 4.0];
626        let features = qkernel.simulate_feature_map(&x);
627
628        // Should return amplitudes for 2^4 = 16 basis states
629        assert!(features.len() > 0);
630        assert!(features.iter().all(|&a| a.is_finite()));
631    }
632}