pub struct CountVectorizer { /* private fields */ }Expand description
Count vectorizer that uses a bag-of-words representation
Implementations§
Source§impl CountVectorizer
impl CountVectorizer
Sourcepub fn new(binary: bool) -> Self
pub fn new(binary: bool) -> Self
Create a new count vectorizer
Examples found in repository?
examples/text_processing_demo.rs (line 76)
14fn main() -> Result<(), Box<dyn std::error::Error>> {
15 println!("=== SciRS2 Text Processing Demo ===\n");
16
17 let documents = [
18 "The quick brown fox jumps over the lazy dog.",
19 "A fast red fox leaped over the sleeping canine.",
20 "Machine learning algorithms process textual data efficiently.",
21 "Text processing and natural language understanding are important.",
22 ];
23
24 // 1. Text Normalization
25 println!("1. Text Normalization");
26 let normalizer = BasicNormalizer::new(true, true);
27 for (i, doc) in documents.iter().enumerate() {
28 let normalized = normalizer.normalize(doc)?;
29 println!("Doc {}: {}", i + 1, normalized);
30 }
31 println!();
32
33 // 2. Text Cleaning
34 println!("2. Text Cleaning");
35 let cleaner = BasicTextCleaner::new(true, true, true);
36 for (i, doc) in documents.iter().enumerate() {
37 let cleaned = cleaner.clean(doc)?;
38 println!("Doc {}: {}", i + 1, cleaned);
39 }
40 println!();
41
42 // 3. Tokenization Examples
43 println!("3. Tokenization Examples");
44
45 // Word tokenization
46 let word_tokenizer = WordTokenizer::new(true);
47 let tokens = word_tokenizer.tokenize(documents[0])?;
48 println!("Word tokens: {tokens:?}");
49
50 // N-gram tokenization
51 let ngram_tokenizer = NgramTokenizer::new(2)?;
52 let ngrams = ngram_tokenizer.tokenize(documents[0])?;
53 println!("2-grams: {ngrams:?}");
54
55 // Regex tokenization
56 let regex_tokenizer = RegexTokenizer::new(r"\b\w+\b", false)?;
57 let regex_tokens = regex_tokenizer.tokenize(documents[0])?;
58 println!("Regex tokens: {regex_tokens:?}");
59 println!();
60
61 // 4. Stemming and Lemmatization
62 println!("4. Stemming and Lemmatization");
63 let porter_stemmer = PorterStemmer::new();
64 let lemmatizer = SimpleLemmatizer::new();
65
66 let test_words = vec!["running", "jumped", "better", "processing"];
67 for word in test_words {
68 let stemmed = porter_stemmer.stem(word)?;
69 let lemmatized = lemmatizer.stem(word)?;
70 println!("{word}: stemmed={stemmed}, lemmatized={lemmatized}");
71 }
72 println!();
73
74 // 5. Count Vectorization
75 println!("5. Count Vectorization");
76 let mut count_vectorizer = CountVectorizer::new(false);
77
78 let doc_refs = documents.to_vec();
79 count_vectorizer.fit(&doc_refs)?;
80
81 // Transform individual documents
82 let count_matrix = count_vectorizer.transform_batch(&doc_refs)?;
83 println!("Count vector shape: {:?}", count_matrix.shape());
84 println!("Vocabulary size: {}", count_vectorizer.vocabulary().len());
85
86 println!();
87
88 // 6. TF-IDF Vectorization
89 println!("6. TF-IDF Vectorization");
90 let mut tfidf_vectorizer = TfidfVectorizer::new(false, true, Some("l2".to_string()));
91
92 tfidf_vectorizer.fit(&doc_refs)?;
93 let tfidf_matrix = tfidf_vectorizer.transform_batch(&doc_refs)?;
94
95 println!("TF-IDF vector shape: {:?}", tfidf_matrix.shape());
96 println!("Sample TF-IDF values:");
97 for i in 0..3.min(tfidf_matrix.nrows()) {
98 for j in 0..5.min(tfidf_matrix.ncols()) {
99 print!("{:.3} ", tfidf_matrix[[i, j]]);
100 }
101 println!();
102 }
103 println!();
104
105 // 7. Complete Pipeline Example
106 println!("7. Complete Text Processing Pipeline");
107 let testtext = "The cats were running quickly through the gardens.";
108
109 // Normalize
110 let normalized = normalizer.normalize(testtext)?;
111 println!("Normalized: {normalized}");
112
113 // Clean
114 let cleaned = cleaner.clean(&normalized)?;
115 println!("Cleaned: {cleaned}");
116
117 // Tokenize
118 let tokens = word_tokenizer.tokenize(&cleaned)?;
119 println!("Tokens: {tokens:?}");
120
121 // Stem
122 let stemmed_tokens: Result<Vec<_>, _> = tokens
123 .iter()
124 .map(|token| porter_stemmer.stem(token))
125 .collect();
126 let stemmed_tokens = stemmed_tokens?;
127 println!("Stemmed: {stemmed_tokens:?}");
128
129 Ok(())
130}Sourcepub fn with_tokenizer(
tokenizer: Box<dyn Tokenizer + Send + Sync>,
binary: bool,
) -> Self
pub fn with_tokenizer( tokenizer: Box<dyn Tokenizer + Send + Sync>, binary: bool, ) -> Self
Create a count vectorizer with a custom tokenizer
Sourcepub fn vocabulary(&self) -> &Vocabulary
pub fn vocabulary(&self) -> &Vocabulary
Get a reference to the vocabulary
Examples found in repository?
examples/text_processing_demo.rs (line 84)
14fn main() -> Result<(), Box<dyn std::error::Error>> {
15 println!("=== SciRS2 Text Processing Demo ===\n");
16
17 let documents = [
18 "The quick brown fox jumps over the lazy dog.",
19 "A fast red fox leaped over the sleeping canine.",
20 "Machine learning algorithms process textual data efficiently.",
21 "Text processing and natural language understanding are important.",
22 ];
23
24 // 1. Text Normalization
25 println!("1. Text Normalization");
26 let normalizer = BasicNormalizer::new(true, true);
27 for (i, doc) in documents.iter().enumerate() {
28 let normalized = normalizer.normalize(doc)?;
29 println!("Doc {}: {}", i + 1, normalized);
30 }
31 println!();
32
33 // 2. Text Cleaning
34 println!("2. Text Cleaning");
35 let cleaner = BasicTextCleaner::new(true, true, true);
36 for (i, doc) in documents.iter().enumerate() {
37 let cleaned = cleaner.clean(doc)?;
38 println!("Doc {}: {}", i + 1, cleaned);
39 }
40 println!();
41
42 // 3. Tokenization Examples
43 println!("3. Tokenization Examples");
44
45 // Word tokenization
46 let word_tokenizer = WordTokenizer::new(true);
47 let tokens = word_tokenizer.tokenize(documents[0])?;
48 println!("Word tokens: {tokens:?}");
49
50 // N-gram tokenization
51 let ngram_tokenizer = NgramTokenizer::new(2)?;
52 let ngrams = ngram_tokenizer.tokenize(documents[0])?;
53 println!("2-grams: {ngrams:?}");
54
55 // Regex tokenization
56 let regex_tokenizer = RegexTokenizer::new(r"\b\w+\b", false)?;
57 let regex_tokens = regex_tokenizer.tokenize(documents[0])?;
58 println!("Regex tokens: {regex_tokens:?}");
59 println!();
60
61 // 4. Stemming and Lemmatization
62 println!("4. Stemming and Lemmatization");
63 let porter_stemmer = PorterStemmer::new();
64 let lemmatizer = SimpleLemmatizer::new();
65
66 let test_words = vec!["running", "jumped", "better", "processing"];
67 for word in test_words {
68 let stemmed = porter_stemmer.stem(word)?;
69 let lemmatized = lemmatizer.stem(word)?;
70 println!("{word}: stemmed={stemmed}, lemmatized={lemmatized}");
71 }
72 println!();
73
74 // 5. Count Vectorization
75 println!("5. Count Vectorization");
76 let mut count_vectorizer = CountVectorizer::new(false);
77
78 let doc_refs = documents.to_vec();
79 count_vectorizer.fit(&doc_refs)?;
80
81 // Transform individual documents
82 let count_matrix = count_vectorizer.transform_batch(&doc_refs)?;
83 println!("Count vector shape: {:?}", count_matrix.shape());
84 println!("Vocabulary size: {}", count_vectorizer.vocabulary().len());
85
86 println!();
87
88 // 6. TF-IDF Vectorization
89 println!("6. TF-IDF Vectorization");
90 let mut tfidf_vectorizer = TfidfVectorizer::new(false, true, Some("l2".to_string()));
91
92 tfidf_vectorizer.fit(&doc_refs)?;
93 let tfidf_matrix = tfidf_vectorizer.transform_batch(&doc_refs)?;
94
95 println!("TF-IDF vector shape: {:?}", tfidf_matrix.shape());
96 println!("Sample TF-IDF values:");
97 for i in 0..3.min(tfidf_matrix.nrows()) {
98 for j in 0..5.min(tfidf_matrix.ncols()) {
99 print!("{:.3} ", tfidf_matrix[[i, j]]);
100 }
101 println!();
102 }
103 println!();
104
105 // 7. Complete Pipeline Example
106 println!("7. Complete Text Processing Pipeline");
107 let testtext = "The cats were running quickly through the gardens.";
108
109 // Normalize
110 let normalized = normalizer.normalize(testtext)?;
111 println!("Normalized: {normalized}");
112
113 // Clean
114 let cleaned = cleaner.clean(&normalized)?;
115 println!("Cleaned: {cleaned}");
116
117 // Tokenize
118 let tokens = word_tokenizer.tokenize(&cleaned)?;
119 println!("Tokens: {tokens:?}");
120
121 // Stem
122 let stemmed_tokens: Result<Vec<_>, _> = tokens
123 .iter()
124 .map(|token| porter_stemmer.stem(token))
125 .collect();
126 let stemmed_tokens = stemmed_tokens?;
127 println!("Stemmed: {stemmed_tokens:?}");
128
129 Ok(())
130}More examples
examples/topic_modeling_demo.rs (line 45)
9fn main() -> Result<(), Box<dyn std::error::Error>> {
10 println!("Topic Modeling with LDA Demo");
11 println!("===========================\n");
12
13 // Sample documents about different topics
14 let documents = vec![
15 // Technology documents
16 "Artificial intelligence and machine learning are transforming the tech industry",
17 "Deep learning neural networks require powerful GPUs for training",
18 "Computer vision algorithms can now recognize objects in real time",
19 "Natural language processing helps computers understand human language",
20 // Sports documents
21 "The basketball team won the championship after a thrilling final game",
22 "Football players need excellent physical conditioning and teamwork",
23 "Tennis requires both physical fitness and mental concentration",
24 "Swimming is an excellent full-body workout and competitive sport",
25 // Science documents
26 "Climate change is affecting global weather patterns and ecosystems",
27 "Quantum physics explores the behavior of matter at atomic scales",
28 "Genetic research is unlocking the secrets of human DNA",
29 "Space exploration continues to reveal mysteries of the universe",
30 ];
31
32 // Convert documents to document-term matrix
33 let mut vectorizer = CountVectorizer::default();
34 let doc_term_matrix = vectorizer.fit_transform(&documents)?;
35
36 println!("Document-Term Matrix:");
37 println!(
38 " Shape: ({}, {})",
39 doc_term_matrix.nrows(),
40 doc_term_matrix.ncols()
41 );
42 println!(" Vocabulary size: {}\n", vectorizer.vocabulary_size());
43
44 // Create vocabulary mapping
45 let vocabulary = vectorizer.vocabulary();
46 let mut word_index_map = HashMap::new();
47 for (word, &idx) in vocabulary.token_to_index().iter() {
48 word_index_map.insert(idx, word.clone());
49 }
50
51 // Train LDA model
52 let mut lda = LdaBuilder::new()
53 .ntopics(3)
54 .maxiter(100)
55 .random_seed(42)
56 .doc_topic_prior(0.1)
57 .topic_word_prior(0.01)
58 .learning_method(LdaLearningMethod::Batch)
59 .build();
60
61 println!("Training LDA model with 3 topics...");
62 let doc_topics = lda.fit_transform(&doc_term_matrix)?;
63 println!("Training completed!\n");
64
65 // Display document-topic assignments
66 println!("Document-Topic Assignments:");
67 for (doc_idx, topic_dist) in doc_topics.outer_iter().enumerate() {
68 let max_topic = topic_dist
69 .iter()
70 .enumerate()
71 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
72 .map(|(idx_, _)| idx_)
73 .unwrap();
74
75 println!(
76 "Document {}: Topic {} (probabilities: {:.3}, {:.3}, {:.3})",
77 doc_idx + 1,
78 max_topic,
79 topic_dist[0],
80 topic_dist[1],
81 topic_dist[2]
82 );
83 }
84 println!();
85
86 // Get topics with top words
87 let topics = lda.get_topics(10, &word_index_map)?;
88
89 println!("Discovered Topics:");
90 for topic in &topics {
91 println!("\nTopic {}:", topic.id);
92 println!("Top words:");
93 for (word, weight) in &topic.top_words {
94 println!(" {word} ({weight:.4})");
95 }
96 }
97
98 // Analyze a new document
99 println!("\n\nAnalyzing a new document:");
100 let new_doc = "Machine learning algorithms are revolutionizing artificial intelligence";
101 let new_doc_vec = vectorizer.transform(new_doc)?;
102 let new_doc_topics = lda.transform(&new_doc_vec.insert_axis(scirs2_core::ndarray::Axis(0)))?;
103
104 println!("Document: \"{new_doc}\"");
105 println!("Topic distribution:");
106 for (topic_idx, &prob) in new_doc_topics.row(0).iter().enumerate() {
107 println!(" Topic {topic_idx}: {prob:.3}");
108 }
109
110 // Create another LDA model with different configuration
111 println!("\n\nTrying different LDA configuration:");
112 let mut lda2 = LatentDirichletAllocation::with_ntopics(4);
113 lda2.fit(&doc_term_matrix)?;
114
115 let topics2 = lda2.get_topics(5, &word_index_map)?;
116 println!("Discovered {} topics with top 5 words each:", topics2.len());
117 for topic in &topics2 {
118 let words: Vec<String> = topic
119 .top_words
120 .iter()
121 .map(|(word_, _)| word_.clone())
122 .collect();
123 println!("Topic {}: {}", topic.id, words.join(", "));
124 }
125
126 Ok(())
127}Sourcepub fn vocabulary_size(&self) -> usize
pub fn vocabulary_size(&self) -> usize
Get the vocabulary size
Examples found in repository?
examples/topic_modeling_demo.rs (line 42)
9fn main() -> Result<(), Box<dyn std::error::Error>> {
10 println!("Topic Modeling with LDA Demo");
11 println!("===========================\n");
12
13 // Sample documents about different topics
14 let documents = vec![
15 // Technology documents
16 "Artificial intelligence and machine learning are transforming the tech industry",
17 "Deep learning neural networks require powerful GPUs for training",
18 "Computer vision algorithms can now recognize objects in real time",
19 "Natural language processing helps computers understand human language",
20 // Sports documents
21 "The basketball team won the championship after a thrilling final game",
22 "Football players need excellent physical conditioning and teamwork",
23 "Tennis requires both physical fitness and mental concentration",
24 "Swimming is an excellent full-body workout and competitive sport",
25 // Science documents
26 "Climate change is affecting global weather patterns and ecosystems",
27 "Quantum physics explores the behavior of matter at atomic scales",
28 "Genetic research is unlocking the secrets of human DNA",
29 "Space exploration continues to reveal mysteries of the universe",
30 ];
31
32 // Convert documents to document-term matrix
33 let mut vectorizer = CountVectorizer::default();
34 let doc_term_matrix = vectorizer.fit_transform(&documents)?;
35
36 println!("Document-Term Matrix:");
37 println!(
38 " Shape: ({}, {})",
39 doc_term_matrix.nrows(),
40 doc_term_matrix.ncols()
41 );
42 println!(" Vocabulary size: {}\n", vectorizer.vocabulary_size());
43
44 // Create vocabulary mapping
45 let vocabulary = vectorizer.vocabulary();
46 let mut word_index_map = HashMap::new();
47 for (word, &idx) in vocabulary.token_to_index().iter() {
48 word_index_map.insert(idx, word.clone());
49 }
50
51 // Train LDA model
52 let mut lda = LdaBuilder::new()
53 .ntopics(3)
54 .maxiter(100)
55 .random_seed(42)
56 .doc_topic_prior(0.1)
57 .topic_word_prior(0.01)
58 .learning_method(LdaLearningMethod::Batch)
59 .build();
60
61 println!("Training LDA model with 3 topics...");
62 let doc_topics = lda.fit_transform(&doc_term_matrix)?;
63 println!("Training completed!\n");
64
65 // Display document-topic assignments
66 println!("Document-Topic Assignments:");
67 for (doc_idx, topic_dist) in doc_topics.outer_iter().enumerate() {
68 let max_topic = topic_dist
69 .iter()
70 .enumerate()
71 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
72 .map(|(idx_, _)| idx_)
73 .unwrap();
74
75 println!(
76 "Document {}: Topic {} (probabilities: {:.3}, {:.3}, {:.3})",
77 doc_idx + 1,
78 max_topic,
79 topic_dist[0],
80 topic_dist[1],
81 topic_dist[2]
82 );
83 }
84 println!();
85
86 // Get topics with top words
87 let topics = lda.get_topics(10, &word_index_map)?;
88
89 println!("Discovered Topics:");
90 for topic in &topics {
91 println!("\nTopic {}:", topic.id);
92 println!("Top words:");
93 for (word, weight) in &topic.top_words {
94 println!(" {word} ({weight:.4})");
95 }
96 }
97
98 // Analyze a new document
99 println!("\n\nAnalyzing a new document:");
100 let new_doc = "Machine learning algorithms are revolutionizing artificial intelligence";
101 let new_doc_vec = vectorizer.transform(new_doc)?;
102 let new_doc_topics = lda.transform(&new_doc_vec.insert_axis(scirs2_core::ndarray::Axis(0)))?;
103
104 println!("Document: \"{new_doc}\"");
105 println!("Topic distribution:");
106 for (topic_idx, &prob) in new_doc_topics.row(0).iter().enumerate() {
107 println!(" Topic {topic_idx}: {prob:.3}");
108 }
109
110 // Create another LDA model with different configuration
111 println!("\n\nTrying different LDA configuration:");
112 let mut lda2 = LatentDirichletAllocation::with_ntopics(4);
113 lda2.fit(&doc_term_matrix)?;
114
115 let topics2 = lda2.get_topics(5, &word_index_map)?;
116 println!("Discovered {} topics with top 5 words each:", topics2.len());
117 for topic in &topics2 {
118 let words: Vec<String> = topic
119 .top_words
120 .iter()
121 .map(|(word_, _)| word_.clone())
122 .collect();
123 println!("Topic {}: {}", topic.id, words.join(", "));
124 }
125
126 Ok(())
127}Sourcepub fn get_feature_count(
&self,
matrix: &Array2<f64>,
document_index: usize,
feature_index: usize,
) -> Option<f64>
pub fn get_feature_count( &self, matrix: &Array2<f64>, document_index: usize, feature_index: usize, ) -> Option<f64>
Get feature count for a specific document and feature index from a matrix
Sourcepub fn vocabulary_map(&self) -> HashMap<String, usize>
pub fn vocabulary_map(&self) -> HashMap<String, usize>
Get vocabulary as HashMap for compatibility with visualization
Trait Implementations§
Source§impl Clone for CountVectorizer
impl Clone for CountVectorizer
Source§impl Default for CountVectorizer
impl Default for CountVectorizer
Source§impl Vectorizer for CountVectorizer
impl Vectorizer for CountVectorizer
Auto Trait Implementations§
impl Freeze for CountVectorizer
impl !RefUnwindSafe for CountVectorizer
impl Send for CountVectorizer
impl Sync for CountVectorizer
impl Unpin for CountVectorizer
impl !UnwindSafe for CountVectorizer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.