topic_modeling_demo/
topic_modeling_demo.rs

1//! Topic modeling example using LDA
2
3use scirs2_text::{
4    CountVectorizer, LatentDirichletAllocation, LdaBuilder, LdaLearningMethod, Vectorizer,
5};
6use std::collections::HashMap;
7
8#[allow(dead_code)]
9fn main() -> Result<(), Box<dyn std::error::Error>> {
10    println!("Topic Modeling with LDA Demo");
11    println!("===========================\n");
12
13    // Sample documents about different topics
14    let documents = vec![
15        // Technology documents
16        "Artificial intelligence and machine learning are transforming the tech industry",
17        "Deep learning neural networks require powerful GPUs for training",
18        "Computer vision algorithms can now recognize objects in real time",
19        "Natural language processing helps computers understand human language",
20        // Sports documents
21        "The basketball team won the championship after a thrilling final game",
22        "Football players need excellent physical conditioning and teamwork",
23        "Tennis requires both physical fitness and mental concentration",
24        "Swimming is an excellent full-body workout and competitive sport",
25        // Science documents
26        "Climate change is affecting global weather patterns and ecosystems",
27        "Quantum physics explores the behavior of matter at atomic scales",
28        "Genetic research is unlocking the secrets of human DNA",
29        "Space exploration continues to reveal mysteries of the universe",
30    ];
31
32    // Convert documents to document-term matrix
33    let mut vectorizer = CountVectorizer::default();
34    let doc_term_matrix = vectorizer.fit_transform(&documents)?;
35
36    println!("Document-Term Matrix:");
37    println!(
38        "  Shape: ({}, {})",
39        doc_term_matrix.nrows(),
40        doc_term_matrix.ncols()
41    );
42    println!("  Vocabulary size: {}\n", vectorizer.vocabulary_size());
43
44    // Create vocabulary mapping
45    let vocabulary = vectorizer.vocabulary();
46    let mut word_index_map = HashMap::new();
47    for (word, &idx) in vocabulary.token_to_index().iter() {
48        word_index_map.insert(idx, word.clone());
49    }
50
51    // Train LDA model
52    let mut lda = LdaBuilder::new()
53        .ntopics(3)
54        .maxiter(100)
55        .random_seed(42)
56        .doc_topic_prior(0.1)
57        .topic_word_prior(0.01)
58        .learning_method(LdaLearningMethod::Batch)
59        .build();
60
61    println!("Training LDA model with 3 topics...");
62    let doc_topics = lda.fit_transform(&doc_term_matrix)?;
63    println!("Training completed!\n");
64
65    // Display document-topic assignments
66    println!("Document-Topic Assignments:");
67    for (doc_idx, topic_dist) in doc_topics.outer_iter().enumerate() {
68        let max_topic = topic_dist
69            .iter()
70            .enumerate()
71            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
72            .map(|(idx_, _)| idx_)
73            .unwrap();
74
75        println!(
76            "Document {}: Topic {} (probabilities: {:.3}, {:.3}, {:.3})",
77            doc_idx + 1,
78            max_topic,
79            topic_dist[0],
80            topic_dist[1],
81            topic_dist[2]
82        );
83    }
84    println!();
85
86    // Get topics with top words
87    let topics = lda.get_topics(10, &word_index_map)?;
88
89    println!("Discovered Topics:");
90    for topic in &topics {
91        println!("\nTopic {}:", topic.id);
92        println!("Top words:");
93        for (word, weight) in &topic.top_words {
94            println!("  {word} ({weight:.4})");
95        }
96    }
97
98    // Analyze a new document
99    println!("\n\nAnalyzing a new document:");
100    let new_doc = "Machine learning algorithms are revolutionizing artificial intelligence";
101    let new_doc_vec = vectorizer.transform(new_doc)?;
102    let new_doc_topics = lda.transform(&new_doc_vec.insert_axis(scirs2_core::ndarray::Axis(0)))?;
103
104    println!("Document: \"{new_doc}\"");
105    println!("Topic distribution:");
106    for (topic_idx, &prob) in new_doc_topics.row(0).iter().enumerate() {
107        println!("  Topic {topic_idx}: {prob:.3}");
108    }
109
110    // Create another LDA model with different configuration
111    println!("\n\nTrying different LDA configuration:");
112    let mut lda2 = LatentDirichletAllocation::with_ntopics(4);
113    lda2.fit(&doc_term_matrix)?;
114
115    let topics2 = lda2.get_topics(5, &word_index_map)?;
116    println!("Discovered {} topics with top 5 words each:", topics2.len());
117    for topic in &topics2 {
118        let words: Vec<String> = topic
119            .top_words
120            .iter()
121            .map(|(word_, _)| word_.clone())
122            .collect();
123        println!("Topic {}: {}", topic.id, words.join(", "));
124    }
125
126    Ok(())
127}