Expand description
Common neural network functionality
This module re-exports the most commonly used types and traits to provide a convenient single import for users of the library.
Re-exportsยง
pub use crate::activations::Activation;
pub use crate::activations::ReLU;
pub use crate::activations::Sigmoid;
pub use crate::activations::Softmax;
pub use crate::activations::Tanh;
pub use crate::activations::GELU;
pub use crate::callbacks::EarlyStopping;
pub use crate::callbacks::GradientClipping;
pub use crate::callbacks::GradientClippingMethod;
pub use crate::callbacks::ModelCheckpoint;
pub use crate::error::Error;
pub use crate::error::Result;
pub use crate::evaluation::CrossValidationConfig;
pub use crate::evaluation::CrossValidator;
pub use crate::evaluation::EarlyStoppingConfig;
pub use crate::evaluation::EarlyStoppingMode;
pub use crate::evaluation::EvaluationConfig;
pub use crate::evaluation::Evaluator;
pub use crate::evaluation::Metric;
pub use crate::evaluation::MetricType;
pub use crate::evaluation::TestConfig;
pub use crate::evaluation::TestEvaluator;
pub use crate::evaluation::ValidationConfig;
pub use crate::evaluation::ValidationHandler;
pub use crate::layers::ActivityRegularization;
pub use crate::layers::AdaptiveAvgPool2D;
pub use crate::layers::AdaptiveMaxPool2D;
pub use crate::layers::Dense;
pub use crate::layers::Dropout;
pub use crate::layers::L1ActivityRegularization;
pub use crate::layers::L2ActivityRegularization;
pub use crate::layers::Layer;
pub use crate::layers::LayerConfig;
pub use crate::layers::Sequential;
pub use crate::losses::ContrastiveLoss;
pub use crate::losses::CrossEntropyLoss;
pub use crate::losses::FocalLoss;
pub use crate::losses::Loss;
pub use crate::losses::TripletLoss;
pub use crate::models::Model;
pub use crate::optimizers::Adam;
pub use crate::optimizers::Optimizer;
pub use crate::optimizers::RMSprop;
pub use crate::optimizers::SGD;
pub use crate::training::GradientAccumulationConfig;
pub use crate::training::GradientAccumulator;
pub use crate::training::GradientStats;
pub use crate::training::MixedPrecisionConfig;
pub use crate::training::MixedPrecisionManager;
pub use crate::training::Trainer;
pub use crate::training::TrainingConfig;
pub use crate::training::TrainingSession;
pub use crate::training::ValidationSettings;
pub use crate::transformer::TransformerDecoderLayer;
pub use crate::transformer::TransformerEncoderLayer;
pub use crate::utils::positional_encoding::PositionalEncoding;
pub use crate::utils::positional_encoding::SinusoidalPositionalEncoding;
pub use crate::performance::OptimizationCapabilities;
pub use crate::performance::PerformanceOptimizer;
pub use crate::performance::PerformanceProfiler;
pub use crate::performance::ThreadPoolManager;
pub use crate::augmentation::AudioAugmentation;
pub use crate::augmentation::AugmentationManager;
pub use crate::augmentation::AugmentationPipelineBuilder;
pub use crate::augmentation::FillMode;
pub use crate::augmentation::ImageAugmentation;
pub use crate::augmentation::MixAugmentation;
pub use crate::augmentation::TextAugmentation;
pub use crate::model_evaluation::AveragingMethod;
pub use crate::model_evaluation::ClassificationMetric;
pub use crate::model_evaluation::CrossValidationStrategy;
pub use crate::model_evaluation::EvaluationBuilder;
pub use crate::model_evaluation::EvaluationMetric;
pub use crate::model_evaluation::ModelEvaluator;
pub use crate::model_evaluation::RegressionMetric;
pub use crate::compression::CalibrationMethod;
pub use crate::compression::CompressionAnalyzer;
pub use crate::compression::ModelPruner;
pub use crate::compression::PostTrainingQuantizer;
pub use crate::compression::PruningMethod;
pub use crate::compression::QuantizationBits;
pub use crate::compression::QuantizationScheme;
pub use crate::distillation::DistillationMethod;
pub use crate::distillation::DistillationTrainer;
pub use crate::distillation::FeatureAdaptation;
pub use crate::transfer_learning::LayerState;
pub use crate::transfer_learning::TransferLearningManager;
pub use crate::transfer_learning::TransferStrategy;
pub use crate::interpretation::AttributionMethod;
pub use crate::interpretation::BaselineMethod;
pub use crate::interpretation::ModelInterpreter;
pub use crate::interpretation::VisualizationMethod;
pub use crate::models::architectures::AttentionType;
pub use crate::models::architectures::BertConfig;
pub use crate::models::architectures::BertModel;
pub use crate::models::architectures::CLIPConfig;
pub use crate::models::architectures::CLIPTextConfig;
pub use crate::models::architectures::ConvNeXt;
pub use crate::models::architectures::ConvNeXtConfig;
pub use crate::models::architectures::ConvNeXtVariant;
pub use crate::models::architectures::EfficientNet;
pub use crate::models::architectures::EfficientNetConfig;
pub use crate::models::architectures::FeatureFusion;
pub use crate::models::architectures::FeatureFusionConfig;
pub use crate::models::architectures::FusionMethod;
pub use crate::models::architectures::GPTConfig;
pub use crate::models::architectures::GPTModel;
pub use crate::models::architectures::MobileNet;
pub use crate::models::architectures::MobileNetConfig;
pub use crate::models::architectures::MobileNetVersion;
pub use crate::models::architectures::RNNCellType;
pub use crate::models::architectures::ResNet;
pub use crate::models::architectures::ResNetConfig;
pub use crate::models::architectures::Seq2Seq;
pub use crate::models::architectures::Seq2SeqConfig;
pub use crate::models::architectures::ViTConfig;
pub use crate::models::architectures::VisionTransformer;
pub use crate::models::architectures::CLIP;