pub struct LSTM<F: Float + Debug> { /* private fields */ }
Expand description
Long Short-Term Memory (LSTM) layer
Implements an LSTM layer with the following update rules: i_t = sigmoid(W_ii * x_t + b_ii + W_hi * h_(t-1) + b_hi) # input gate f_t = sigmoid(W_if * x_t + b_if + W_hf * h_(t-1) + b_hf) # forget gate g_t = tanh(W_ig * x_t + b_ig + W_hg * h_(t-1) + b_hg) # cell input o_t = sigmoid(W_io * x_t + b_io + W_ho * h_(t-1) + b_ho) # output gate c_t = f_t * c_(t-1) + i_t * g_t # cell state h_t = o_t * tanh(c_t) # hidden state
§Examples
use scirs2_neural::layers::{LSTM, Layer};
use ndarray::{Array, Array3};
use rand::rngs::SmallRng;
use rand::SeedableRng;
// Create an LSTM layer with 10 input features and 20 hidden units
let mut rng = SmallRng::seed_from_u64(42);
let lstm = LSTM::new(10, 20, &mut rng).unwrap();
// Forward pass with a batch of 2 samples, sequence length 5, and 10 features
let batch_size = 2;
let seq_len = 5;
let input_size = 10;
let input = Array3::<f64>::from_elem((batch_size, seq_len, input_size), 0.1).into_dyn();
let output = lstm.forward(&input).unwrap();
// Output should have dimensions [batch_size, seq_len, hidden_size]
assert_eq!(output.shape(), &[batch_size, seq_len, 20]);
Implementations§
Trait Implementations§
Source§impl<F: Float + Debug + ScalarOperand + 'static> Layer<F> for LSTM<F>
impl<F: Float + Debug + ScalarOperand + 'static> Layer<F> for LSTM<F>
Source§fn as_any_mut(&mut self) -> &mut dyn Any
fn as_any_mut(&mut self) -> &mut dyn Any
Get the layer as a mutable dyn Any for downcasting Read more
Source§fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>
fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>
Forward pass of the layer Read more
Source§fn backward(
&self,
input: &Array<F, IxDyn>,
_grad_output: &Array<F, IxDyn>,
) -> Result<Array<F, IxDyn>>
fn backward( &self, input: &Array<F, IxDyn>, _grad_output: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>
Backward pass of the layer to compute gradients Read more
Source§fn update(&mut self, learning_rate: F) -> Result<()>
fn update(&mut self, learning_rate: F) -> Result<()>
Update the layer parameters with the given gradients Read more
Source§fn gradients(&self) -> Vec<Array<F, IxDyn>> ⓘ
fn gradients(&self) -> Vec<Array<F, IxDyn>> ⓘ
Get the gradients of the layer parameters Read more
Source§fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>
fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>
Set the gradients of the layer parameters Read more
Source§fn set_params(&mut self, _params: &[Array<F, IxDyn>]) -> Result<()>
fn set_params(&mut self, _params: &[Array<F, IxDyn>]) -> Result<()>
Set the parameters of the layer Read more
Source§fn set_training(&mut self, _training: bool)
fn set_training(&mut self, _training: bool)
Set the layer to training mode (true) or evaluation mode (false) Read more
Source§fn is_training(&self) -> bool
fn is_training(&self) -> bool
Get the current training mode Read more
Source§fn layer_type(&self) -> &str
fn layer_type(&self) -> &str
Get the type of the layer (e.g., “Dense”, “Conv2D”) Read more
Source§fn parameter_count(&self) -> usize
fn parameter_count(&self) -> usize
Get the number of trainable parameters in this layer Read more
Source§fn layer_description(&self) -> String
fn layer_description(&self) -> String
Get a detailed description of this layer Read more
Source§impl<F: Float + Debug + ScalarOperand + 'static> ParamLayer<F> for LSTM<F>
impl<F: Float + Debug + ScalarOperand + 'static> ParamLayer<F> for LSTM<F>
Auto Trait Implementations§
impl<F> !Freeze for LSTM<F>
impl<F> !RefUnwindSafe for LSTM<F>
impl<F> Send for LSTM<F>where
F: Send,
impl<F> !Sync for LSTM<F>
impl<F> Unpin for LSTM<F>
impl<F> UnwindSafe for LSTM<F>where
F: RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more