scirs2_neural/
lib.rs

1//! Neural network building blocks module for SciRS2
2//!
3//! This module provides neural network building blocks for SciRS2, including:
4//! - Layers (dense, convolutional, recurrent, etc.)
5//! - Activation functions (ReLU, sigmoid, tanh, etc.)
6//! - Loss functions (MSE, cross-entropy, etc.)
7//! - Optimizers (SGD, Adam, etc.)
8//! - Model architectures and training utilities
9//! - Neural network specific linear algebra operations
10//! - Model evaluation and testing
11//! - Advanced training techniques
12
13#![warn(missing_docs)]
14#![recursion_limit = "524288"]
15
16pub mod activations;
17pub mod autograd;
18pub mod callbacks;
19// Temporarily disabled due to model config field mismatches
20// pub mod config;
21/// Data augmentation module
22pub mod augmentation;
23/// C/C++ bindings module
24pub mod bindings;
25/// Model compression module
26pub mod compression;
27pub mod data;
28/// Knowledge distillation module
29pub mod distillation;
30pub mod error;
31pub mod evaluation;
32/// GPU acceleration module (currently CPU fallback)
33pub mod gpu;
34/// Framework interoperability module
35pub mod interop;
36/// Interpretation module
37pub mod interpretation;
38pub mod layers;
39pub mod linalg;
40pub mod losses;
41/// Memory-efficient operations module
42pub mod memory_efficient;
43/// Mobile deployment module
44pub mod mobile;
45/// Enhanced model evaluation module
46pub mod model_evaluation;
47pub mod models;
48pub mod optimizers;
49/// Performance optimization module
50pub mod performance;
51pub mod prelude;
52/// Quantization module
53pub mod quantization;
54pub mod serialization;
55/// Serving and deployment module
56pub mod serving;
57pub mod training;
58/// Transfer learning module
59pub mod transfer_learning;
60pub mod transformer;
61pub mod utils;
62/// Visualization tools module
63pub mod visualization;
64/// WebAssembly module
65pub mod wasm;
66
67// Export specific items from each module to avoid name conflicts
68// Use the prelude module for a convenient import
69
70// Re-export the error type
71pub use error::{Error, NeuralError, Result};