Struct ThreadPoolManager

Source
pub struct ThreadPoolManager { /* private fields */ }
Expand description

Thread pool manager for parallel neural network operations

Manages a pool of worker threads for parallel execution of neural network operations, providing load balancing and efficient resource utilization.

Implementations§

Source§

impl ThreadPoolManager

Source

pub fn new(num_threads: Option<usize>) -> Result<Self>

Create a new thread pool manager

§Arguments
  • num_threads - Number of threads in the pool (None for automatic detection)
§Examples
use scirs2_neural::performance::threading::ThreadPoolManager;

// Auto-detect thread count
let pool = ThreadPoolManager::new(None).unwrap();

// Specify thread count
let pool = ThreadPoolManager::new(Some(8)).unwrap();
Examples found in repository?
examples/new_features_showcase.rs (line 134)
128fn demonstrate_performance_optimizations() -> Result<(), Box<dyn std::error::Error>> {
129    println!("⚡ Performance Optimizations Demonstration");
130    println!("========================================\n");
131
132    // 1. Thread Pool Manager
133    println!("1. Thread Pool Manager:");
134    let thread_pool = ThreadPoolManager::new(Some(4))?;
135    println!(
136        "   Created thread pool with {} threads",
137        thread_pool.num_threads()
138    );
139
140    // Demonstrate parallel matrix multiplication
141    let matrix_a = Array::from_elem((100, 50), 2.0f32).into_dyn();
142    let matrix_b = Array::from_elem((50, 75), 3.0f32).into_dyn();
143
144    let start_time = std::time::Instant::now();
145    let result = thread_pool.parallel_matmul(&matrix_a, &matrix_b)?;
146    let elapsed = start_time.elapsed();
147
148    println!(
149        "   Parallel matrix multiplication: {}x{} * {}x{} = {}x{}",
150        matrix_a.shape()[0],
151        matrix_a.shape()[1],
152        matrix_b.shape()[0],
153        matrix_b.shape()[1],
154        result.shape()[0],
155        result.shape()[1]
156    );
157    println!("   Time elapsed: {:.3}ms", elapsed.as_secs_f64() * 1000.0);
158    println!("   Result sample: {:.1}", result[[0, 0]]);
159
160    // 2. Performance Profiler
161    println!("\n2. Performance Profiler:");
162    let mut optimizer = PerformanceOptimizer::new(Some(1024), Some(512), Some(4), true)?;
163
164    // Simulate some operations with profiling
165    {
166        let timer = optimizer.profiler_mut().start_timer("matrix_setup");
167        let test_matrix_a = Array::from_elem((200, 100), 1.5f32).into_dyn();
168        let test_matrix_b = Array::from_elem((100, 150), 2.5f32).into_dyn();
169        optimizer
170            .profiler_mut()
171            .end_timer("matrix_setup".to_string(), timer);
172
173        let _result = optimizer.optimized_matmul(&test_matrix_a, &test_matrix_b)?;
174    }
175
176    println!("   Performance profile summary:");
177    optimizer.profiler().print_summary();
178
179    // 3. Optimization Capabilities
180    println!("\n3. Optimization Capabilities:");
181    let capabilities = optimizer.get_capabilities();
182    println!("{}", capabilities);
183
184    println!("✅ Performance optimizations demonstration completed!\n");
185    Ok(())
186}
Source

pub fn execute<F, R>(&self, f: F) -> R
where F: FnOnce() -> R + Send, R: Send,

Execute a function in the thread pool (no-op without parallel)

Source

pub fn parallel_matmul( &self, a: &ArrayD<f32>, b: &ArrayD<f32>, ) -> Result<ArrayD<f32>>

Parallel matrix multiplication using thread pool

Performs matrix multiplication with automatic parallelization across available threads for improved performance on large matrices.

Examples found in repository?
examples/new_features_showcase.rs (line 145)
128fn demonstrate_performance_optimizations() -> Result<(), Box<dyn std::error::Error>> {
129    println!("⚡ Performance Optimizations Demonstration");
130    println!("========================================\n");
131
132    // 1. Thread Pool Manager
133    println!("1. Thread Pool Manager:");
134    let thread_pool = ThreadPoolManager::new(Some(4))?;
135    println!(
136        "   Created thread pool with {} threads",
137        thread_pool.num_threads()
138    );
139
140    // Demonstrate parallel matrix multiplication
141    let matrix_a = Array::from_elem((100, 50), 2.0f32).into_dyn();
142    let matrix_b = Array::from_elem((50, 75), 3.0f32).into_dyn();
143
144    let start_time = std::time::Instant::now();
145    let result = thread_pool.parallel_matmul(&matrix_a, &matrix_b)?;
146    let elapsed = start_time.elapsed();
147
148    println!(
149        "   Parallel matrix multiplication: {}x{} * {}x{} = {}x{}",
150        matrix_a.shape()[0],
151        matrix_a.shape()[1],
152        matrix_b.shape()[0],
153        matrix_b.shape()[1],
154        result.shape()[0],
155        result.shape()[1]
156    );
157    println!("   Time elapsed: {:.3}ms", elapsed.as_secs_f64() * 1000.0);
158    println!("   Result sample: {:.1}", result[[0, 0]]);
159
160    // 2. Performance Profiler
161    println!("\n2. Performance Profiler:");
162    let mut optimizer = PerformanceOptimizer::new(Some(1024), Some(512), Some(4), true)?;
163
164    // Simulate some operations with profiling
165    {
166        let timer = optimizer.profiler_mut().start_timer("matrix_setup");
167        let test_matrix_a = Array::from_elem((200, 100), 1.5f32).into_dyn();
168        let test_matrix_b = Array::from_elem((100, 150), 2.5f32).into_dyn();
169        optimizer
170            .profiler_mut()
171            .end_timer("matrix_setup".to_string(), timer);
172
173        let _result = optimizer.optimized_matmul(&test_matrix_a, &test_matrix_b)?;
174    }
175
176    println!("   Performance profile summary:");
177    optimizer.profiler().print_summary();
178
179    // 3. Optimization Capabilities
180    println!("\n3. Optimization Capabilities:");
181    let capabilities = optimizer.get_capabilities();
182    println!("{}", capabilities);
183
184    println!("✅ Performance optimizations demonstration completed!\n");
185    Ok(())
186}
Source

pub fn parallel_conv2d( &self, input: &ArrayD<f32>, kernel: &ArrayD<f32>, bias: Option<&[f32]>, stride: (usize, usize), padding: (usize, usize), ) -> Result<ArrayD<f32>>

Parallel convolution operation

Source

pub fn num_threads(&self) -> usize

Get the number of threads in the pool

Examples found in repository?
examples/new_features_showcase.rs (line 137)
128fn demonstrate_performance_optimizations() -> Result<(), Box<dyn std::error::Error>> {
129    println!("⚡ Performance Optimizations Demonstration");
130    println!("========================================\n");
131
132    // 1. Thread Pool Manager
133    println!("1. Thread Pool Manager:");
134    let thread_pool = ThreadPoolManager::new(Some(4))?;
135    println!(
136        "   Created thread pool with {} threads",
137        thread_pool.num_threads()
138    );
139
140    // Demonstrate parallel matrix multiplication
141    let matrix_a = Array::from_elem((100, 50), 2.0f32).into_dyn();
142    let matrix_b = Array::from_elem((50, 75), 3.0f32).into_dyn();
143
144    let start_time = std::time::Instant::now();
145    let result = thread_pool.parallel_matmul(&matrix_a, &matrix_b)?;
146    let elapsed = start_time.elapsed();
147
148    println!(
149        "   Parallel matrix multiplication: {}x{} * {}x{} = {}x{}",
150        matrix_a.shape()[0],
151        matrix_a.shape()[1],
152        matrix_b.shape()[0],
153        matrix_b.shape()[1],
154        result.shape()[0],
155        result.shape()[1]
156    );
157    println!("   Time elapsed: {:.3}ms", elapsed.as_secs_f64() * 1000.0);
158    println!("   Result sample: {:.1}", result[[0, 0]]);
159
160    // 2. Performance Profiler
161    println!("\n2. Performance Profiler:");
162    let mut optimizer = PerformanceOptimizer::new(Some(1024), Some(512), Some(4), true)?;
163
164    // Simulate some operations with profiling
165    {
166        let timer = optimizer.profiler_mut().start_timer("matrix_setup");
167        let test_matrix_a = Array::from_elem((200, 100), 1.5f32).into_dyn();
168        let test_matrix_b = Array::from_elem((100, 150), 2.5f32).into_dyn();
169        optimizer
170            .profiler_mut()
171            .end_timer("matrix_setup".to_string(), timer);
172
173        let _result = optimizer.optimized_matmul(&test_matrix_a, &test_matrix_b)?;
174    }
175
176    println!("   Performance profile summary:");
177    optimizer.profiler().print_summary();
178
179    // 3. Optimization Capabilities
180    println!("\n3. Optimization Capabilities:");
181    let capabilities = optimizer.get_capabilities();
182    println!("{}", capabilities);
183
184    println!("✅ Performance optimizations demonstration completed!\n");
185    Ok(())
186}
Source

pub fn get_stats(&self) -> ThreadPoolStats

Get thread pool statistics

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V