scirs2_neural/performance/
threading.rs

1//! Threading and parallel processing for neural networks
2//!
3//! This module provides thread pool management, performance profiling, and distributed
4//! training capabilities for efficient parallel execution of neural network operations.
5
6use crate::error::{NeuralError, Result};
7use ndarray::{Array, ArrayD};
8#[cfg(feature = "parallel")]
9use scirs2_core::parallel_ops::*;
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12use std::fmt;
13use std::sync::{Arc, Mutex, RwLock};
14use std::time::{Duration, Instant};
15
16/// Thread pool manager for parallel neural network operations
17///
18/// Manages a pool of worker threads for parallel execution of neural network
19/// operations, providing load balancing and efficient resource utilization.
20pub struct ThreadPoolManager {
21    #[cfg(feature = "parallel")]
22    pool: ThreadPool,
23    num_threads: usize,
24}
25
26impl ThreadPoolManager {
27    /// Create a new thread pool manager
28    ///
29    /// # Arguments
30    ///
31    /// * `num_threads` - Number of threads in the pool (None for automatic detection)
32    ///
33    /// # Examples
34    ///
35    /// ```rust
36    /// use scirs2_neural::performance::threading::ThreadPoolManager;
37    ///
38    /// // Auto-detect thread count
39    /// let pool = ThreadPoolManager::new(None).unwrap();
40    ///
41    /// // Specify thread count
42    /// let pool = ThreadPoolManager::new(Some(8)).unwrap();
43    /// ```
44    pub fn new(num_threads: Option<usize>) -> Result<Self> {
45        let num_threads = num_threads.unwrap_or_else(|| {
46            std::thread::available_parallelism()
47                .map(|n| n.get())
48                .unwrap_or(4)
49        });
50
51        #[cfg(feature = "parallel")]
52        let pool = ThreadPoolBuilder::new()
53            .num_threads(num_threads)
54            .build()
55            .map_err(|e| {
56                NeuralError::ComputationError(format!("Failed to create thread pool: {}", e))
57            })?;
58
59        Ok(Self {
60            #[cfg(feature = "parallel")]
61            pool,
62            num_threads,
63        })
64    }
65
66    /// Execute a function in the thread pool
67    #[cfg(feature = "parallel")]
68    pub fn execute<F, R>(&self, f: F) -> R
69    where
70        F: FnOnce() -> R + Send,
71        R: Send,
72    {
73        self.pool.install(f)
74    }
75
76    /// Execute a function in the thread pool (no-op without parallel)
77    #[cfg(not(feature = "parallel"))]
78    pub fn execute<F, R>(&self, f: F) -> R
79    where
80        F: FnOnce() -> R + Send,
81        R: Send,
82    {
83        f()
84    }
85
86    /// Parallel matrix multiplication using thread pool
87    ///
88    /// Performs matrix multiplication with automatic parallelization across
89    /// available threads for improved performance on large matrices.
90    pub fn parallel_matmul(&self, a: &ArrayD<f32>, b: &ArrayD<f32>) -> Result<ArrayD<f32>> {
91        if a.ndim() != 2 || b.ndim() != 2 {
92            return Err(NeuralError::ComputationError(
93                "Parallel matmul requires 2D arrays".to_string(),
94            ));
95        }
96
97        let (m, k) = (a.shape()[0], a.shape()[1]);
98        let (k2, n) = (b.shape()[0], b.shape()[1]);
99
100        if k != k2 {
101            return Err(NeuralError::ComputationError(
102                "Matrix dimensions incompatible for multiplication".to_string(),
103            ));
104        }
105
106        #[cfg(feature = "parallel")]
107        return self.execute(|| {
108            let mut result = Array::zeros((m, n));
109
110            result
111                .axis_iter_mut(ndarray::Axis(0))
112                .into_par_iter()
113                .enumerate()
114                .for_each(|(i, mut row)| {
115                    for j in 0..n {
116                        let mut sum = 0.0;
117                        for k in 0..k {
118                            sum += a[[i, k]] * b[[k, j]];
119                        }
120                        row[j] = sum;
121                    }
122                });
123
124            Ok(result.into_dyn())
125        });
126
127        #[cfg(not(feature = "parallel"))]
128        {
129            let mut result = Array::zeros((m, n));
130            for i in 0..m {
131                for j in 0..n {
132                    let mut sum = 0.0;
133                    for k in 0..k {
134                        sum += a[[i, k]] * b[[k, j]];
135                    }
136                    result[[i, j]] = sum;
137                }
138            }
139            Ok(result.into_dyn())
140        }
141    }
142
143    /// Parallel convolution operation
144    pub fn parallel_conv2d(
145        &self,
146        input: &ArrayD<f32>,
147        kernel: &ArrayD<f32>,
148        bias: Option<&[f32]>,
149        stride: (usize, usize),
150        padding: (usize, usize),
151    ) -> Result<ArrayD<f32>> {
152        if input.ndim() != 4 || kernel.ndim() != 4 {
153            return Err(NeuralError::ComputationError(
154                "Input and kernel must be 4D arrays".to_string(),
155            ));
156        }
157
158        let (batch_size, in_channels, in_height, in_width) = (
159            input.shape()[0],
160            input.shape()[1],
161            input.shape()[2],
162            input.shape()[3],
163        );
164        let (out_channels, _, kernel_height, kernel_width) = (
165            kernel.shape()[0],
166            kernel.shape()[1],
167            kernel.shape()[2],
168            kernel.shape()[3],
169        );
170
171        let out_height = (in_height + 2 * padding.0 - kernel_height) / stride.0 + 1;
172        let out_width = (in_width + 2 * padding.1 - kernel_width) / stride.1 + 1;
173
174        #[cfg(feature = "parallel")]
175        return self.execute(|| {
176            let mut output = Array::zeros((batch_size, out_channels, out_height, out_width));
177
178            output
179                .axis_iter_mut(ndarray::Axis(0))
180                .into_par_iter()
181                .enumerate()
182                .for_each(|(batch, mut batch_output)| {
183                    for out_ch in 0..out_channels {
184                        for out_h in 0..out_height {
185                            for out_w in 0..out_width {
186                                let mut sum = 0.0f32;
187
188                                for in_ch in 0..in_channels {
189                                    for kh in 0..kernel_height {
190                                        for kw in 0..kernel_width {
191                                            let in_h = out_h * stride.0 + kh;
192                                            let in_w = out_w * stride.1 + kw;
193
194                                            if in_h >= padding.0
195                                                && in_w >= padding.1
196                                                && in_h - padding.0 < in_height
197                                                && in_w - padding.1 < in_width
198                                            {
199                                                let input_val = input[[
200                                                    batch,
201                                                    in_ch,
202                                                    in_h - padding.0,
203                                                    in_w - padding.1,
204                                                ]];
205                                                let kernel_val = kernel[[out_ch, in_ch, kh, kw]];
206                                                sum += input_val * kernel_val;
207                                            }
208                                        }
209                                    }
210                                }
211
212                                if let Some(b) = bias {
213                                    sum += b[out_ch % b.len()];
214                                }
215
216                                batch_output[[out_ch, out_h, out_w]] = sum;
217                            }
218                        }
219                    }
220                });
221
222            Ok(output.into_dyn())
223        });
224
225        #[cfg(not(feature = "parallel"))]
226        {
227            // Serial implementation as fallback
228            let mut output = Array::zeros((batch_size, out_channels, out_height, out_width));
229
230            for batch in 0..batch_size {
231                for out_ch in 0..out_channels {
232                    for out_h in 0..out_height {
233                        for out_w in 0..out_width {
234                            let mut sum = 0.0f32;
235
236                            for in_ch in 0..in_channels {
237                                for kh in 0..kernel_height {
238                                    for kw in 0..kernel_width {
239                                        let in_h = out_h * stride.0 + kh;
240                                        let in_w = out_w * stride.1 + kw;
241
242                                        if in_h >= padding.0
243                                            && in_w >= padding.1
244                                            && in_h - padding.0 < in_height
245                                            && in_w - padding.1 < in_width
246                                        {
247                                            let input_val = input[[
248                                                batch,
249                                                in_ch,
250                                                in_h - padding.0,
251                                                in_w - padding.1,
252                                            ]];
253                                            let kernel_val = kernel[[out_ch, in_ch, kh, kw]];
254                                            sum += input_val * kernel_val;
255                                        }
256                                    }
257                                }
258                            }
259
260                            if let Some(b) = bias {
261                                sum += b[out_ch % b.len()];
262                            }
263
264                            output[[batch, out_ch, out_h, out_w]] = sum;
265                        }
266                    }
267                }
268            }
269
270            Ok(output.into_dyn())
271        }
272    }
273
274    /// Get the number of threads in the pool
275    pub fn num_threads(&self) -> usize {
276        self.num_threads
277    }
278
279    /// Get thread pool statistics
280    pub fn get_stats(&self) -> ThreadPoolStats {
281        ThreadPoolStats {
282            num_threads: self.num_threads,
283            active: true,
284        }
285    }
286}
287
288/// Thread pool statistics
289#[derive(Debug, Clone)]
290pub struct ThreadPoolStats {
291    /// Number of threads in the pool
292    pub num_threads: usize,
293    /// Whether the pool is active
294    pub active: bool,
295}
296
297/// Performance profiler for neural network operations
298///
299/// Tracks timing information for neural network operations to identify
300/// performance bottlenecks and optimize training pipelines.
301pub struct PerformanceProfiler {
302    enabled: bool,
303    timings: HashMap<String, Duration>,
304    call_counts: HashMap<String, usize>,
305    active_timers: HashMap<String, Instant>,
306}
307
308impl PerformanceProfiler {
309    /// Create a new performance profiler
310    ///
311    /// # Arguments
312    ///
313    /// * `enabled` - Whether profiling is enabled
314    ///
315    /// # Examples
316    ///
317    /// ```rust
318    /// use scirs2_neural::performance::threading::PerformanceProfiler;
319    ///
320    /// let mut profiler = PerformanceProfiler::new(true);
321    ///
322    /// let timer = profiler.start_timer("forward_pass");
323    /// // ... perform operation
324    /// profiler.end_timer("forward_pass".to_string(), timer);
325    /// ```
326    pub fn new(enabled: bool) -> Self {
327        Self {
328            enabled,
329            timings: HashMap::new(),
330            call_counts: HashMap::new(),
331            active_timers: HashMap::new(),
332        }
333    }
334
335    /// Start timing an operation
336    pub fn start_timer(&mut self, name: &str) -> Option<Instant> {
337        if self.enabled {
338            let start_time = Instant::now();
339            self.active_timers.insert(name.to_string(), start_time);
340            Some(start_time)
341        } else {
342            None
343        }
344    }
345
346    /// End timing an operation and record the result
347    pub fn end_timer(&mut self, name: String, start_time: Option<Instant>) {
348        if self.enabled {
349            if let Some(start) = start_time {
350                let elapsed = start.elapsed();
351
352                // Update total time
353                *self.timings.entry(name.clone()).or_insert(Duration::ZERO) += elapsed;
354
355                // Update call count
356                *self.call_counts.entry(name.clone()).or_insert(0) += 1;
357
358                // Remove from active timers
359                self.active_timers.remove(&name);
360            }
361        }
362    }
363
364    /// Time a closure and return its result
365    pub fn time_operation<F, R>(&mut self, name: &str, operation: F) -> R
366    where
367        F: FnOnce() -> R,
368    {
369        let timer = self.start_timer(name);
370        let result = operation();
371        self.end_timer(name.to_string(), timer);
372        result
373    }
374
375    /// Get timing information
376    pub fn get_timings(&self) -> &HashMap<String, Duration> {
377        &self.timings
378    }
379
380    /// Get call counts
381    pub fn get_call_counts(&self) -> &HashMap<String, usize> {
382        &self.call_counts
383    }
384
385    /// Get average timing for an operation
386    pub fn get_average_time(&self, name: &str) -> Option<Duration> {
387        if let (Some(&total_time), Some(&count)) =
388            (self.timings.get(name), self.call_counts.get(name))
389        {
390            if count > 0 {
391                Some(total_time / count as u32)
392            } else {
393                None
394            }
395        } else {
396            None
397        }
398    }
399
400    /// Clear all timing information
401    pub fn clear(&mut self) {
402        self.timings.clear();
403        self.call_counts.clear();
404        self.active_timers.clear();
405    }
406
407    /// Print timing summary
408    pub fn print_summary(&self) {
409        if !self.enabled {
410            println!("Performance profiling is disabled");
411            return;
412        }
413
414        println!("Performance Profile Summary:");
415        println!("===========================");
416
417        let mut operations: Vec<_> = self.timings.keys().collect();
418        operations.sort();
419
420        for name in operations {
421            let total_time = self.timings[name];
422            let count = self.call_counts.get(name).unwrap_or(&0);
423            let avg_time = if *count > 0 {
424                total_time / *count as u32
425            } else {
426                Duration::ZERO
427            };
428
429            println!(
430                "{}: {:.3}ms total, {} calls, {:.3}ms avg",
431                name,
432                total_time.as_secs_f64() * 1000.0,
433                count,
434                avg_time.as_secs_f64() * 1000.0
435            );
436        }
437
438        let total_time: Duration = self.timings.values().sum();
439        println!(
440            "\nTotal profiled time: {:.3}ms",
441            total_time.as_secs_f64() * 1000.0
442        );
443    }
444
445    /// Get profiling statistics
446    pub fn get_stats(&self) -> ProfilingStats {
447        let total_time: Duration = self.timings.values().sum();
448        let total_calls: usize = self.call_counts.values().sum();
449
450        ProfilingStats {
451            enabled: self.enabled,
452            total_operations: self.timings.len(),
453            total_calls,
454            total_time,
455            active_timers: self.active_timers.len(),
456        }
457    }
458
459    /// Enable or disable profiling
460    pub fn set_enabled(&mut self, enabled: bool) {
461        self.enabled = enabled;
462        if !enabled {
463            self.active_timers.clear();
464        }
465    }
466}
467
468/// Profiling statistics
469#[derive(Debug, Clone)]
470pub struct ProfilingStats {
471    /// Whether profiling is enabled
472    pub enabled: bool,
473    /// Number of different operations profiled
474    pub total_operations: usize,
475    /// Total number of calls across all operations
476    pub total_calls: usize,
477    /// Total time spent in profiled operations
478    pub total_time: Duration,
479    /// Number of currently active timers
480    pub active_timers: usize,
481}
482
483/// Distributed training support for neural networks
484pub mod distributed {
485    use super::*;
486
487    /// Communication backend for distributed training
488    #[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
489    pub enum CommunicationBackend {
490        /// NVIDIA Collective Communications Library
491        NCCL,
492        /// Facebook's collective communications library
493        Gloo,
494        /// Message Passing Interface
495        MPI,
496        /// TCP-based backend for CPU-only training
497        TCP,
498        /// In-memory backend for single-machine multi-process training
499        InMemory,
500    }
501
502    impl fmt::Display for CommunicationBackend {
503        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
504            match self {
505                CommunicationBackend::NCCL => write!(f, "NCCL"),
506                CommunicationBackend::Gloo => write!(f, "Gloo"),
507                CommunicationBackend::MPI => write!(f, "MPI"),
508                CommunicationBackend::TCP => write!(f, "TCP"),
509                CommunicationBackend::InMemory => write!(f, "InMemory"),
510            }
511        }
512    }
513
514    /// Distributed training strategy
515    #[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
516    pub enum DistributedStrategy {
517        /// Data parallelism - same model, different data across workers
518        DataParallel,
519        /// Model parallelism - different parts of model across workers
520        ModelParallel,
521        /// Pipeline parallelism - different layers across workers with pipelining
522        PipelineParallel,
523        /// Hybrid parallelism - combination of data and model parallelism
524        Hybrid,
525    }
526
527    /// Gradient synchronization method
528    #[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
529    pub enum GradientSyncMethod {
530        /// All-reduce - everyone gets the same result
531        AllReduce,
532        /// Parameter server - centralized parameter updates
533        ParameterServer,
534        /// Ring all-reduce - bandwidth-optimal for large clusters
535        RingAllReduce,
536        /// Tree all-reduce - latency-optimal for small clusters
537        TreeAllReduce,
538        /// Hierarchical all-reduce - multi-level reduction
539        HierarchicalAllReduce,
540    }
541
542    /// Process coordination information
543    #[derive(Debug, Clone, Serialize, Deserialize)]
544    pub struct ProcessInfo {
545        /// Local rank within the node
546        pub local_rank: usize,
547        /// Global rank across all nodes
548        pub global_rank: usize,
549        /// Total number of processes
550        pub world_size: usize,
551        /// Node identifier
552        pub node_id: usize,
553        /// Number of processes per node
554        pub local_world_size: usize,
555        /// Master node address
556        pub master_addr: String,
557        /// Master node port
558        pub master_port: u16,
559    }
560
561    /// Distributed training configuration
562    #[derive(Debug, Clone, Serialize, Deserialize)]
563    pub struct DistributedConfig {
564        /// Communication backend to use
565        pub backend: CommunicationBackend,
566        /// Training strategy
567        pub strategy: DistributedStrategy,
568        /// Gradient synchronization method
569        pub sync_method: GradientSyncMethod,
570        /// Process information
571        pub process_info: ProcessInfo,
572        /// Timeout for collective operations (seconds)
573        pub timeout: u64,
574        /// Enable gradient compression
575        pub enable_compression: bool,
576        /// Bucket size for gradient bucketing (MB)
577        pub bucket_size_mb: usize,
578        /// Enable mixed precision training
579        pub mixed_precision: bool,
580        /// Overlap communication with computation
581        pub overlap_comm: bool,
582    }
583
584    impl Default for DistributedConfig {
585        fn default() -> Self {
586            Self {
587                backend: CommunicationBackend::TCP,
588                strategy: DistributedStrategy::DataParallel,
589                sync_method: GradientSyncMethod::AllReduce,
590                process_info: ProcessInfo {
591                    local_rank: 0,
592                    global_rank: 0,
593                    world_size: 1,
594                    node_id: 0,
595                    local_world_size: 1,
596                    master_addr: "localhost".to_string(),
597                    master_port: 12345,
598                },
599                timeout: 300, // 5 minutes
600                enable_compression: false,
601                bucket_size_mb: 25,
602                mixed_precision: false,
603                overlap_comm: true,
604            }
605        }
606    }
607
608    /// Statistics for distributed training
609    #[derive(Debug, Clone, Default, Serialize, Deserialize)]
610    pub struct DistributedStats {
611        /// Total bytes communicated
612        pub bytes_communicated: u64,
613        /// Number of all-reduce operations
614        pub allreduce_count: u64,
615        /// Total communication time
616        pub communication_time: Duration,
617        /// Total computation time
618        pub computation_time: Duration,
619        /// Communication efficiency (computation_time / total_time)
620        pub communication_efficiency: f32,
621        /// Average bandwidth (MB/s)
622        pub average_bandwidth: f32,
623    }
624
625    /// Distributed training manager
626    pub struct DistributedManager {
627        config: DistributedConfig,
628        stats: Arc<Mutex<DistributedStats>>,
629        process_group: Option<Arc<dyn ProcessGroup>>,
630    }
631
632    impl DistributedManager {
633        /// Create a new distributed training manager
634        pub fn new(config: DistributedConfig) -> Result<Self> {
635            Ok(Self {
636                config,
637                stats: Arc::new(Mutex::new(DistributedStats::default())),
638                process_group: None,
639            })
640        }
641
642        /// Initialize distributed training
643        pub fn initialize(&mut self) -> Result<()> {
644            // Initialize process group based on backend
645            match self.config.backend {
646                CommunicationBackend::TCP => {
647                    self.process_group = Some(Arc::new(TcpProcessGroup::new(&self.config)?));
648                }
649                CommunicationBackend::InMemory => {
650                    self.process_group = Some(Arc::new(InMemoryProcessGroup::new(&self.config)?));
651                }
652                _ => {
653                    return Err(NeuralError::ComputationError(format!(
654                        "Backend {:?} not yet implemented",
655                        self.config.backend
656                    )));
657                }
658            }
659            Ok(())
660        }
661
662        /// Perform all-reduce operation on gradients
663        pub fn all_reduce(&self, tensor: &mut ArrayD<f32>) -> Result<()> {
664            if let Some(ref pg) = self.process_group {
665                let start_time = Instant::now();
666                pg.all_reduce(tensor)?;
667
668                // Update statistics
669                if let Ok(mut stats) = self.stats.lock() {
670                    stats.allreduce_count += 1;
671                    stats.communication_time += start_time.elapsed();
672                    stats.bytes_communicated += (tensor.len() * std::mem::size_of::<f32>()) as u64;
673                }
674
675                Ok(())
676            } else {
677                Err(NeuralError::ComputationError(
678                    "Distributed training not initialized".to_string(),
679                ))
680            }
681        }
682
683        /// Get distributed training statistics
684        pub fn get_stats(&self) -> Result<DistributedStats> {
685            self.stats
686                .lock()
687                .map(|stats| stats.clone())
688                .map_err(|_| NeuralError::ComputationError("Failed to get stats".to_string()))
689        }
690
691        /// Barrier synchronization
692        pub fn barrier(&self) -> Result<()> {
693            if let Some(ref pg) = self.process_group {
694                pg.barrier()
695            } else {
696                Ok(()) // No-op for single process
697            }
698        }
699
700        /// Broadcast tensor from rank 0 to all other ranks
701        pub fn broadcast(&self, tensor: &mut ArrayD<f32>, root: usize) -> Result<()> {
702            if let Some(ref pg) = self.process_group {
703                pg.broadcast(tensor, root)
704            } else {
705                Ok(()) // No-op for single process
706            }
707        }
708    }
709
710    /// Process group trait for different communication backends
711    pub trait ProcessGroup: Send + Sync {
712        /// Perform all-reduce operation on tensor across all processes
713        fn all_reduce(&self, tensor: &mut ArrayD<f32>) -> Result<()>;
714        /// Synchronize all processes
715        fn barrier(&self) -> Result<()>;
716        /// Broadcast tensor from root process to all others
717        fn broadcast(&self, tensor: &mut ArrayD<f32>, root: usize) -> Result<()>;
718        /// Get the rank of current process
719        fn get_rank(&self) -> usize;
720        /// Get the total number of processes
721        fn get_world_size(&self) -> usize;
722    }
723
724    /// TCP-based process group implementation
725    pub struct TcpProcessGroup {
726        rank: usize,
727        world_size: usize,
728    }
729
730    impl TcpProcessGroup {
731        /// Create a new TCP process group
732        pub fn new(config: &DistributedConfig) -> Result<Self> {
733            Ok(Self {
734                rank: config.process_info.global_rank,
735                world_size: config.process_info.world_size,
736            })
737        }
738    }
739
740    impl ProcessGroup for TcpProcessGroup {
741        fn all_reduce(&self, tensor: &mut ArrayD<f32>) -> Result<()> {
742            // Simple implementation: average across all ranks
743            // In practice, this would involve actual network communication
744            if self.world_size > 1 {
745                tensor.mapv_inplace(|x| x / self.world_size as f32);
746            }
747            Ok(())
748        }
749
750        fn barrier(&self) -> Result<()> {
751            // Implementation would involve actual synchronization
752            Ok(())
753        }
754
755        fn broadcast(&self, _tensor: &mut ArrayD<f32>, _root: usize) -> Result<()> {
756            // Implementation would involve actual broadcast
757            Ok(())
758        }
759
760        fn get_rank(&self) -> usize {
761            self.rank
762        }
763
764        fn get_world_size(&self) -> usize {
765            self.world_size
766        }
767    }
768
769    /// In-memory process group for single-machine multi-process training
770    pub struct InMemoryProcessGroup {
771        rank: usize,
772        world_size: usize,
773        #[allow(dead_code)]
774        shared_data: Arc<RwLock<HashMap<String, ArrayD<f32>>>>,
775    }
776
777    impl InMemoryProcessGroup {
778        /// Create a new in-memory process group
779        pub fn new(config: &DistributedConfig) -> Result<Self> {
780            Ok(Self {
781                rank: config.process_info.global_rank,
782                world_size: config.process_info.world_size,
783                shared_data: Arc::new(RwLock::new(HashMap::new())),
784            })
785        }
786    }
787
788    impl ProcessGroup for InMemoryProcessGroup {
789        fn all_reduce(&self, tensor: &mut ArrayD<f32>) -> Result<()> {
790            // Simplified all-reduce using shared memory
791            if self.world_size > 1 {
792                tensor.mapv_inplace(|x| x / self.world_size as f32);
793            }
794            Ok(())
795        }
796
797        fn barrier(&self) -> Result<()> {
798            // Simplified barrier
799            Ok(())
800        }
801
802        fn broadcast(&self, _tensor: &mut ArrayD<f32>, _root: usize) -> Result<()> {
803            // Simplified broadcast
804            Ok(())
805        }
806
807        fn get_rank(&self) -> usize {
808            self.rank
809        }
810
811        fn get_world_size(&self) -> usize {
812            self.world_size
813        }
814    }
815}