pub struct PerformanceBenchmarkResults {
pub results: Vec<BenchmarkResult>,
}
Expand description
Performance benchmark results
Fields§
§results: Vec<BenchmarkResult>
Individual benchmark results
Implementations§
Source§impl PerformanceBenchmarkResults
impl PerformanceBenchmarkResults
Sourcepub fn best_speedup(&self) -> f64
pub fn best_speedup(&self) -> f64
Get the best speedup achieved
Examples found in repository?
examples/advanced_showcase.rs (line 184)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}
Sourcepub fn average_speedup(&self) -> f64
pub fn average_speedup(&self) -> f64
Get the average speedup
Examples found in repository?
examples/advanced_showcase.rs (line 188)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}
Sourcepub fn total_memory_usage(&self) -> f64
pub fn total_memory_usage(&self) -> f64
Get total memory usage
Examples found in repository?
examples/advanced_showcase.rs (line 192)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}
Trait Implementations§
Source§impl Clone for PerformanceBenchmarkResults
impl Clone for PerformanceBenchmarkResults
Source§fn clone(&self) -> PerformanceBenchmarkResults
fn clone(&self) -> PerformanceBenchmarkResults
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreAuto Trait Implementations§
impl Freeze for PerformanceBenchmarkResults
impl RefUnwindSafe for PerformanceBenchmarkResults
impl Send for PerformanceBenchmarkResults
impl Sync for PerformanceBenchmarkResults
impl Unpin for PerformanceBenchmarkResults
impl UnwindSafe for PerformanceBenchmarkResults
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.