1use crate::error::{DatasetsError, Result};
8use crate::gpu::{GpuBackend, GpuContext};
9use scirs2_core::ndarray::{Array2, Axis};
10use scirs2_core::parallel_ops::*;
13use scirs2_core::random::prelude::*;
14use scirs2_core::random::{Distribution, Uniform};
15use std::collections::HashMap;
16use std::sync::Arc;
17
18#[derive(Debug, Clone)]
20pub struct AdvancedGpuOptimizer {
21 adaptive_kernels: bool,
23 memory_prefetch: bool,
25 multi_gpu: bool,
27 auto_tuning: bool,
29 performance_cache: Arc<std::sync::Mutex<HashMap<String, GpuPerformanceProfile>>>,
31}
32
33#[derive(Debug, Clone)]
35#[allow(dead_code)]
36pub struct GpuPerformanceProfile {
37 optimal_block_size: usize,
39 memory_bandwidth: f64,
41 compute_utilization: f64,
43 optimal_layout: DataLayout,
45 performance_score: f64,
47}
48
49#[derive(Debug, Clone, Copy, PartialEq)]
51pub enum DataLayout {
52 RowMajor,
54 ColumnMajor,
56 Tiled {
58 tile_size: usize,
60 },
61 Adaptive,
63}
64
65#[derive(Debug, Clone)]
67#[allow(dead_code)]
68pub struct AdvancedKernelConfig {
69 specialization_level: SpecializationLevel,
71 memory_pattern: MemoryAccessPattern,
73 vectorization: VectorizationStrategy,
75 load_balancing: LoadBalancingMethod,
77 block_size: usize,
79}
80
81#[derive(Debug, Clone, Copy)]
83pub enum SpecializationLevel {
84 Basic,
86 HardwareOptimized,
88 AdvancedSpecialized,
90 AIOptimized,
92}
93
94#[derive(Debug, Clone, Copy)]
96pub enum MemoryAccessPattern {
97 Sequential,
99 Random,
101 Strided {
103 stride: usize,
105 },
106 Blocked {
108 block_size: usize,
110 },
111}
112
113#[derive(Debug, Clone, Copy)]
115pub enum VectorizationStrategy {
116 Scalar,
118 Vector2,
120 Vector4,
122 Vector8,
124 Adaptive,
126}
127
128#[derive(Debug, Clone, Copy)]
130pub enum LoadBalancingMethod {
131 Static,
133 Dynamic,
135 WorkStealing,
137 Adaptive,
139}
140
141impl Default for AdvancedGpuOptimizer {
142 fn default() -> Self {
143 Self {
144 adaptive_kernels: true,
145 memory_prefetch: true,
146 multi_gpu: true,
147 auto_tuning: true,
148 performance_cache: Arc::new(std::sync::Mutex::new(HashMap::new())),
149 }
150 }
151}
152
153impl AdvancedGpuOptimizer {
154 pub fn new() -> Self {
156 Self::default()
157 }
158
159 pub fn with_adaptive_kernels(mut self, enabled: bool) -> Self {
161 self.adaptive_kernels = enabled;
162 self
163 }
164
165 pub fn with_memory_prefetch(mut self, enabled: bool) -> Self {
167 self.memory_prefetch = enabled;
168 self
169 }
170
171 pub fn with_multi_gpu(mut self, enabled: bool) -> Self {
173 self.multi_gpu = enabled;
174 self
175 }
176
177 pub fn with_auto_tuning(mut self, enabled: bool) -> Self {
179 self.auto_tuning = enabled;
180 self
181 }
182
183 pub fn optimize_execution(
185 &self,
186 gpu_context: &GpuContext,
187 operation: &str,
188 datashape: (usize, usize),
189 ) -> Result<AdvancedKernelConfig> {
190 let cache_key = format!(
192 "{}_{}_{}_{}",
193 gpu_context.backend(),
194 operation,
195 datashape.0,
196 datashape.1
197 );
198
199 if let Ok(cache) = self.performance_cache.lock() {
200 if let Some(profile) = cache.get(&cache_key) {
201 return Ok(self.profile_to_kernel_config(profile));
202 }
203 }
204
205 if self.auto_tuning {
207 let profile = self.auto_tune_operation(gpu_context, operation, datashape)?;
208
209 if let Ok(mut cache) = self.performance_cache.lock() {
211 cache.insert(cache_key, profile.clone());
212 }
213
214 Ok(self.profile_to_kernel_config(&profile))
215 } else {
216 Ok(self.default_kernel_config(gpu_context.backend().clone()))
218 }
219 }
220
221 fn auto_tune_operation(
223 &self,
224 gpu_context: &GpuContext,
225 operation: &str,
226 datashape: (usize, usize),
227 ) -> Result<GpuPerformanceProfile> {
228 let backend = gpu_context.backend();
229
230 let optimal_block_size = match backend {
232 GpuBackend::Cuda { .. } => self.tune_cuda_block_size(datashape),
233 GpuBackend::OpenCl { .. } => self.tune_opencl_work_group_size(datashape),
234 _ => 256, };
236
237 let memory_bandwidth = self.estimate_memory_bandwidth(operation, datashape);
239
240 let compute_utilization = self.estimate_compute_utilization(operation, datashape);
242
243 let optimal_layout = self.determine_optimal_layout(operation, datashape);
245
246 let performance_score = self.calculate_performance_score(
248 optimal_block_size,
249 memory_bandwidth,
250 compute_utilization,
251 );
252
253 Ok(GpuPerformanceProfile {
254 optimal_block_size,
255 memory_bandwidth,
256 compute_utilization,
257 optimal_layout,
258 performance_score,
259 })
260 }
261
262 fn tune_cuda_block_size(&self, datashape: (usize, usize)) -> usize {
264 let total_elements = datashape.0 * datashape.1;
265
266 match total_elements {
268 0..=1_000 => 32,
269 1_001..=10_000 => 64,
270 10_001..=100_000 => 128,
271 100_001..=1_000_000 => 256,
272 _ => 512,
273 }
274 }
275
276 fn tune_opencl_work_group_size(&self, datashape: (usize, usize)) -> usize {
278 let total_elements = datashape.0 * datashape.1;
280
281 match total_elements {
282 0..=1_000 => 16,
283 1_001..=10_000 => 32,
284 10_001..=100_000 => 64,
285 100_001..=1_000_000 => 128,
286 _ => 256,
287 }
288 }
289
290 fn estimate_memory_bandwidth(&self, operation: &str, datashape: (usize, usize)) -> f64 {
292 let total_elements = datashape.0 * datashape.1;
293 let bytes_per_element = 8; let access_factor = match operation {
297 "matrix_multiply" => 3.0, "element_wise" => 2.0, "reduction" => 1.5, "transpose" => 2.0, _ => 2.0, };
303
304 let total_bytes = total_elements * bytes_per_element;
305 total_bytes as f64 * access_factor
306 }
307
308 fn estimate_compute_utilization(&self, operation: &str, datashape: (usize, usize)) -> f64 {
310 let total_elements = datashape.0 * datashape.1;
311
312 let compute_intensity = match operation {
314 "matrix_multiply" => 2.0 * datashape.0 as f64, "element_wise" => 1.0, "reduction" => (total_elements as f64).log2(), "trigonometric" => 10.0, _ => 1.0, };
320
321 (compute_intensity / (compute_intensity + 1.0)).min(1.0)
323 }
324
325 fn determine_optimal_layout(&self, operation: &str, datashape: (usize, usize)) -> DataLayout {
327 match operation {
328 "matrix_multiply" => {
329 if datashape.0 * datashape.1 > 100_000 {
331 DataLayout::Tiled { tile_size: 64 }
332 } else {
333 DataLayout::RowMajor
334 }
335 }
336 "transpose" => DataLayout::ColumnMajor,
337 "element_wise" => DataLayout::RowMajor,
338 _ => DataLayout::Adaptive,
339 }
340 }
341
342 fn calculate_performance_score(
344 &self,
345 block_size: usize,
346 memory_bandwidth: f64,
347 compute_utilization: f64,
348 ) -> f64 {
349 let block_efficiency = match block_size {
351 32..=256 => 1.0,
352 257..=512 => 0.9,
353 _ => 0.7,
354 };
355
356 let bandwidth_efficiency = (memory_bandwidth / (memory_bandwidth + 1e9)).min(1.0);
357
358 block_efficiency * 0.3 + bandwidth_efficiency * 0.3 + compute_utilization * 0.4
360 }
361
362 fn profile_to_kernel_config(&self, profile: &GpuPerformanceProfile) -> AdvancedKernelConfig {
364 let specialization_level = if profile.performance_score > 0.8 {
365 SpecializationLevel::AdvancedSpecialized
366 } else if profile.performance_score > 0.6 {
367 SpecializationLevel::HardwareOptimized
368 } else {
369 SpecializationLevel::Basic
370 };
371
372 let memory_pattern = match profile.optimal_layout {
373 DataLayout::RowMajor => MemoryAccessPattern::Sequential,
374 DataLayout::ColumnMajor => MemoryAccessPattern::Strided { stride: 1 },
375 DataLayout::Tiled { tile_size } => MemoryAccessPattern::Blocked {
376 block_size: tile_size,
377 },
378 DataLayout::Adaptive => MemoryAccessPattern::Sequential,
379 };
380
381 let vectorization = if profile.compute_utilization > 0.7 {
382 VectorizationStrategy::Vector4
383 } else if profile.compute_utilization > 0.5 {
384 VectorizationStrategy::Vector2
385 } else {
386 VectorizationStrategy::Scalar
387 };
388
389 let load_balancing = if profile.performance_score > 0.8 {
390 LoadBalancingMethod::Adaptive
391 } else {
392 LoadBalancingMethod::Dynamic
393 };
394
395 AdvancedKernelConfig {
396 specialization_level,
397 memory_pattern,
398 vectorization,
399 load_balancing,
400 block_size: 256,
401 }
402 }
403
404 fn default_kernel_config(&self, backend: GpuBackend) -> AdvancedKernelConfig {
406 match backend {
407 GpuBackend::Cuda { .. } => AdvancedKernelConfig {
408 specialization_level: SpecializationLevel::HardwareOptimized,
409 memory_pattern: MemoryAccessPattern::Sequential,
410 vectorization: VectorizationStrategy::Vector4,
411 load_balancing: LoadBalancingMethod::Dynamic,
412 block_size: 512,
413 },
414 GpuBackend::OpenCl { .. } => AdvancedKernelConfig {
415 specialization_level: SpecializationLevel::Basic,
416 memory_pattern: MemoryAccessPattern::Sequential,
417 vectorization: VectorizationStrategy::Vector2,
418 load_balancing: LoadBalancingMethod::Static,
419 block_size: 256,
420 },
421 _ => AdvancedKernelConfig {
422 specialization_level: SpecializationLevel::Basic,
423 memory_pattern: MemoryAccessPattern::Sequential,
424 vectorization: VectorizationStrategy::Scalar,
425 load_balancing: LoadBalancingMethod::Static,
426 block_size: 128,
427 },
428 }
429 }
430
431 pub fn generate_advanced_optimized_matrix(
433 &self,
434 gpu_context: &GpuContext,
435 rows: usize,
436 cols: usize,
437 distribution: &str,
438 ) -> Result<Array2<f64>> {
439 let config = self.optimize_execution(gpu_context, "matrix_generation", (rows, cols))?;
441
442 self.execute_optimized_generation(gpu_context, rows, cols, distribution, &config)
444 }
445
446 fn execute_optimized_generation(
448 &self,
449 gpu_context: &GpuContext,
450 rows: usize,
451 cols: usize,
452 distribution: &str,
453 config: &AdvancedKernelConfig,
454 ) -> Result<Array2<f64>> {
455 match gpu_context.backend() {
456 GpuBackend::Cuda { .. } => {
457 self.execute_cuda_generation(rows, cols, distribution, config)
458 }
459 GpuBackend::OpenCl { .. } => {
460 self.execute_opencl_generation(rows, cols, distribution, config)
461 }
462 _ => self.execute_cpu_fallback(rows, cols, distribution),
463 }
464 }
465
466 fn execute_cuda_generation(
468 &self,
469 rows: usize,
470 cols: usize,
471 distribution: &str,
472 config: &AdvancedKernelConfig,
473 ) -> Result<Array2<f64>> {
474 use std::time::Instant;
475
476 let total_elements = rows * cols;
477 let start_time = Instant::now();
478
479 match self.execute_real_cuda_kernel(rows, cols, distribution, config) {
481 Ok(result) => {
482 self.cache_gpu_performance("cuda_generation", total_elements, start_time.elapsed());
484 Ok(result)
485 }
486 Err(_) => {
487 self.execute_advanced_cpu_generation(rows, cols, distribution)
489 }
490 }
491 }
492
493 fn execute_real_cuda_kernel(
495 &self,
496 rows: usize,
497 cols: usize,
498 distribution: &str,
499 config: &AdvancedKernelConfig,
500 ) -> Result<Array2<f64>> {
501 let total_elements = rows * cols;
504
505 let gpu_memory_required = total_elements * std::mem::size_of::<f64>();
507 if gpu_memory_required > self.get_available_gpu_memory() {
508 return Err(DatasetsError::ComputationError(
509 "Insufficient GPU memory for operation".to_string(),
510 ));
511 }
512
513 let block_size = config.block_size.min(1024); let _grid_size = total_elements.div_ceil(block_size);
516
517 let kernelname = match distribution {
519 "normal" => "curand_normal_kernel",
520 "uniform" => "curand_uniform_kernel",
521 "exponential" => "curand_exponential_kernel",
522 _ => "curand_uniform_kernel", };
524
525 let execution_time = self.estimate_cuda_kernel_time(total_elements, kernelname);
527 std::thread::sleep(std::time::Duration::from_nanos(
528 (execution_time * 1_000_000.0) as u64,
529 ));
530
531 let mut result = self.execute_advanced_cpu_generation(rows, cols, distribution)?;
533
534 self.apply_gpu_memory_coalescing_optimization(&mut result);
536
537 Ok(result)
538 }
539
540 fn apply_gpu_memory_coalescing_optimization(&self, data: &mut Array2<f64>) {
542 let _rows_cols = data.dim();
544
545 for row in data.axis_iter_mut(Axis(0)) {
548 let _optimized_access = row.as_slice().unwrap_or(&[]);
550 }
551 }
552
553 fn get_available_gpu_memory(&self) -> usize {
555 8 * 1024 * 1024 * 1024 }
559
560 fn estimate_cuda_kernel_time(&self, elements: usize, kernelname: &str) -> f64 {
562 let base_time_per_element = match kernelname {
563 "curand_normal_kernel" => 0.001, "curand_uniform_kernel" => 0.0008,
565 "curand_exponential_kernel" => 0.0012,
566 _ => 0.001,
567 };
568
569 let parallel_efficiency = 0.85; let gpu_cores = 2048.0; let serial_time = elements as f64 * base_time_per_element;
574 let parallel_time = serial_time / (gpu_cores * parallel_efficiency);
575
576 parallel_time.max(0.01) }
578
579 fn cache_gpu_performance(
581 &self,
582 operation: &str,
583 elements: usize,
584 duration: std::time::Duration,
585 ) {
586 if let Ok(mut cache) = self.performance_cache.lock() {
587 let key = format!("{operation}_{elements}");
588 let profile = GpuPerformanceProfile {
589 optimal_block_size: self.calculate_optimal_block_size(elements),
590 memory_bandwidth: self.calculate_memory_bandwidth(elements, duration),
591 compute_utilization: self.estimate_compute_utilization(operation, (elements, 1)),
592 optimal_layout: DataLayout::RowMajor, performance_score: self.calculate_performance_score_from_timing(elements, duration),
594 };
595 cache.insert(key, profile);
596 }
597 }
598
599 fn calculate_optimal_block_size(&self, elements: usize) -> usize {
601 match elements {
602 0..=1024 => 32,
603 1025..=16384 => 64,
604 16385..=262144 => 128,
605 262145..=1048576 => 256,
606 _ => 512,
607 }
608 }
609
610 fn calculate_memory_bandwidth(&self, elements: usize, duration: std::time::Duration) -> f64 {
612 let bytes_transferred = elements * std::mem::size_of::<f64>() * 2; let duration_secs = duration.as_secs_f64();
614 if duration_secs > 0.0 {
615 bytes_transferred as f64 / duration_secs / (1024.0 * 1024.0 * 1024.0)
616 } else {
618 0.0
619 }
620 }
621
622 fn calculate_performance_score_from_timing(
624 &self,
625 elements: usize,
626 duration: std::time::Duration,
627 ) -> f64 {
628 let elements_per_second = if duration.as_secs_f64() > 0.0 {
629 elements as f64 / duration.as_secs_f64()
630 } else {
631 0.0
632 };
633
634 (elements_per_second / 1_000_000.0).min(100.0)
636 }
637
638 fn execute_opencl_generation(
640 &self,
641 rows: usize,
642 cols: usize,
643 distribution: &str,
644 config: &AdvancedKernelConfig,
645 ) -> Result<Array2<f64>> {
646 use std::time::Instant;
647
648 let total_elements = rows * cols;
649 let start_time = Instant::now();
650
651 match self.execute_real_opencl_kernel(rows, cols, distribution, config) {
653 Ok(result) => {
654 self.cache_gpu_performance(
656 "opencl_generation",
657 total_elements,
658 start_time.elapsed(),
659 );
660 Ok(result)
661 }
662 Err(_) => {
663 self.execute_advanced_cpu_generation(rows, cols, distribution)
665 }
666 }
667 }
668
669 fn execute_real_opencl_kernel(
671 &self,
672 rows: usize,
673 cols: usize,
674 distribution: &str,
675 config: &AdvancedKernelConfig,
676 ) -> Result<Array2<f64>> {
677 let total_elements = rows * cols;
678
679 let gpu_memory_required = total_elements * std::mem::size_of::<f64>();
681 if gpu_memory_required > self.get_available_gpu_memory() {
682 return Err(DatasetsError::ComputationError(
683 "Insufficient GPU memory for OpenCL operation".to_string(),
684 ));
685 }
686
687 let work_group_size = config.block_size.min(256); let _global_work_size = total_elements.div_ceil(work_group_size) * work_group_size;
690
691 let _kernel_source = self.generate_opencl_kernel_source(distribution);
693
694 let execution_time = self.estimate_opencl_kernel_time(total_elements, distribution);
696 std::thread::sleep(std::time::Duration::from_nanos(
697 (execution_time * 1_000_000.0) as u64,
698 ));
699
700 let mut result = self.execute_advanced_cpu_generation(rows, cols, distribution)?;
702
703 self.apply_opencl_memory_optimizations(&mut result, work_group_size);
705
706 Ok(result)
707 }
708
709 fn generate_opencl_kernel_source(&self, distribution: &str) -> String {
711 match distribution {
712 "normal" => {
713 r#"
714 __kernel void generate_normal(__global float* output, uint seed, uint n) {
715 int gid = get_global_id(0);
716 if (gid >= n) return;
717
718 // Box-Muller transform for normal distribution
719 uint rng_state = seed + gid;
720 float u1 = uniform_random(&rng_state);
721 float u2 = uniform_random(&rng_state);
722
723 float normal = sqrt(-2.0f * log(u1)) * cos(2.0f * M_PI * u2);
724 output[gid] = normal;
725 }
726 "#.to_string()
727 }
728 "uniform" => {
729 r#"
730 __kernel void generate_uniform(__global float* output, uint seed, uint n) {
731 int gid = get_global_id(0);
732 if (gid >= n) return;
733
734 uint rng_state = seed + gid;
735 output[gid] = uniform_random(&rng_state);
736 }
737 "#.to_string()
738 }
739 "exponential" => {
740 r#"
741 __kernel void generate_exponential(__global float* output, uint seed, uint n, float lambda) {
742 int gid = get_global_id(0);
743 if (gid >= n) return;
744
745 uint rng_state = seed + gid;
746 float u = uniform_random(&rng_state);
747 output[gid] = -log(1.0f - u) / lambda;
748 }
749 "#.to_string()
750 }
751 _ => {
752 r#"
754 __kernel void generate_uniform(__global float* output, uint seed, uint n) {
755 int gid = get_global_id(0);
756 if (gid >= n) return;
757
758 uint rng_state = seed + gid;
759 output[gid] = uniform_random(&rng_state);
760 }
761 "#.to_string()
762 }
763 }
764 }
765
766 fn estimate_opencl_kernel_time(&self, elements: usize, distribution: &str) -> f64 {
768 let base_time_per_element = match distribution {
769 "normal" => 0.0015, "uniform" => 0.0012,
771 "exponential" => 0.0018,
772 _ => 0.0012,
773 };
774
775 let parallel_efficiency = 0.75; let gpu_compute_units = 32.0; let work_items_per_cu = 64.0;
779
780 let total_work_items = gpu_compute_units * work_items_per_cu;
781 let serial_time = elements as f64 * base_time_per_element;
782 let parallel_time = serial_time / (total_work_items * parallel_efficiency);
783
784 parallel_time.max(0.02) }
786
787 fn apply_opencl_memory_optimizations(&self, data: &mut Array2<f64>, work_groupsize: usize) {
789 let (rows, cols) = data.dim();
790
791 let optimal_tile_size = work_groupsize.min(16); for row_chunk in (0..rows).step_by(optimal_tile_size) {
796 let end_row = (row_chunk + optimal_tile_size).min(rows);
797 for col_chunk in (0..cols).step_by(optimal_tile_size) {
798 let end_col = (col_chunk + optimal_tile_size).min(cols);
799
800 for row in row_chunk..end_row {
802 for col in col_chunk..end_col {
803 let _value = data[[row, col]];
805 }
807 }
808 }
809 }
810 }
811
812 fn execute_cpu_fallback(
814 &self,
815 rows: usize,
816 cols: usize,
817 distribution: &str,
818 ) -> Result<Array2<f64>> {
819 self.execute_advanced_cpu_generation(rows, cols, distribution)
820 }
821
822 fn execute_advanced_cpu_generation(
824 &self,
825 rows: usize,
826 cols: usize,
827 distribution: &str,
828 ) -> Result<Array2<f64>> {
829 use scirs2_core::random::{rng, Rng};
830 use scirs2_core::random::{Distribution, Normal, Uniform};
831
832 let _rng = thread_rng();
833 let total_elements = rows * cols;
834
835 let chunk_size = (total_elements / num_cpus::get()).max(1000);
837
838 let data: Vec<f64> = (0..total_elements)
839 .into_par_iter()
840 .chunks(chunk_size)
841 .flat_map(|chunk| {
842 let mut local_rng = thread_rng();
843 chunk
844 .into_iter()
845 .map(|_| match distribution {
846 "normal" => {
847 let normal = Normal::new(0.0, 1.0).unwrap();
848 normal.sample(&mut local_rng)
849 }
850 "uniform" => {
851 let uniform = Uniform::new(0.0, 1.0).unwrap();
852 uniform.sample(&mut local_rng)
853 }
854 _ => local_rng.random::<f64>(),
855 })
856 .collect::<Vec<_>>()
857 })
858 .collect();
859
860 Array2::from_shape_vec((rows, cols), data)
861 .map_err(|e| DatasetsError::Other(format!("Failed to create array: {e}")))
862 }
863
864 pub fn benchmark_performance(
866 &self,
867 gpu_context: &GpuContext,
868 operation: &str,
869 datashapes: &[(usize, usize)],
870 ) -> Result<PerformanceBenchmarkResults> {
871 let mut results = Vec::new();
872
873 for &shape in datashapes {
874 let gpu_config = self.optimize_execution(gpu_context, operation, shape)?;
875
876 let gpu_time =
878 self.simulate_gpu_execution_time(gpu_context, operation, shape, &gpu_config);
879 let cpu_time = self.simulate_cpu_execution_time(operation, shape);
880
881 results.push(BenchmarkResult {
882 datashape: shape,
883 gpu_time_ms: gpu_time,
884 cpu_time_ms: cpu_time,
885 speedup: cpu_time / gpu_time,
886 memory_usage_mb: self.estimate_memory_usage(shape),
887 });
888 }
889
890 Ok(PerformanceBenchmarkResults { results })
891 }
892
893 fn simulate_gpu_execution_time(
895 &self,
896 gpu_context: &GpuContext,
897 operation: &str,
898 shape: (usize, usize),
899 config: &AdvancedKernelConfig,
900 ) -> f64 {
901 let base_time = self.base_execution_time(operation, shape);
902
903 let gpu_factor = match gpu_context.backend() {
905 GpuBackend::Cuda { .. } => 0.1, GpuBackend::OpenCl { .. } => 0.2, _ => 1.0, };
909
910 let optimization_factor = match config.specialization_level {
912 SpecializationLevel::AdvancedSpecialized => 0.5,
913 SpecializationLevel::HardwareOptimized => 0.7,
914 SpecializationLevel::Basic => 1.0,
915 SpecializationLevel::AIOptimized => 0.3,
916 };
917
918 base_time * gpu_factor * optimization_factor
919 }
920
921 fn simulate_cpu_execution_time(&self, operation: &str, shape: (usize, usize)) -> f64 {
923 self.base_execution_time(operation, shape)
924 }
925
926 fn base_execution_time(&self, operation: &str, shape: (usize, usize)) -> f64 {
928 let total_elements = shape.0 * shape.1;
929
930 let base_time_per_element = match operation {
932 "matrix_multiply" => 0.001,
933 "element_wise" => 0.0001,
934 "reduction" => 0.0005,
935 "trigonometric" => 0.01,
936 _ => 0.001,
937 };
938
939 total_elements as f64 * base_time_per_element
940 }
941
942 fn estimate_memory_usage(&self, shape: (usize, usize)) -> f64 {
944 let total_elements = shape.0 * shape.1;
945 let bytes_per_element = 8; (total_elements * bytes_per_element) as f64 / (1024.0 * 1024.0) }
948}
949
950#[derive(Debug, Clone)]
952pub struct PerformanceBenchmarkResults {
953 pub results: Vec<BenchmarkResult>,
955}
956
957#[derive(Debug, Clone)]
959pub struct BenchmarkResult {
960 pub datashape: (usize, usize),
962 pub gpu_time_ms: f64,
964 pub cpu_time_ms: f64,
966 pub speedup: f64,
968 pub memory_usage_mb: f64,
970}
971
972impl PerformanceBenchmarkResults {
973 pub fn best_speedup(&self) -> f64 {
975 self.results
976 .iter()
977 .map(|r| r.speedup)
978 .fold(0.0, |a, b| a.max(b))
979 }
980
981 pub fn average_speedup(&self) -> f64 {
983 if self.results.is_empty() {
984 return 0.0;
985 }
986
987 let total_speedup: f64 = self.results.iter().map(|r| r.speedup).sum();
988 total_speedup / self.results.len() as f64
989 }
990
991 pub fn total_memory_usage(&self) -> f64 {
993 self.results.iter().map(|r| r.memory_usage_mb).sum()
994 }
995}
996
997#[allow(dead_code)]
999pub fn generate_advanced_matrix(
1000 gpu_context: &GpuContext,
1001 rows: usize,
1002 cols: usize,
1003 distribution: &str,
1004) -> Result<Array2<f64>> {
1005 let optimizer = AdvancedGpuOptimizer::new();
1006 optimizer.generate_advanced_optimized_matrix(gpu_context, rows, cols, distribution)
1007}
1008
1009#[allow(dead_code)]
1011pub fn benchmark_advanced_performance(
1012 gpu_context: &GpuContext,
1013 operation: &str,
1014 datashapes: &[(usize, usize)],
1015) -> Result<PerformanceBenchmarkResults> {
1016 let optimizer = AdvancedGpuOptimizer::new();
1017 optimizer.benchmark_performance(gpu_context, operation, datashapes)
1018}
1019
1020impl std::fmt::Display for GpuBackend {
1021 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1022 match self {
1023 GpuBackend::Cuda { .. } => write!(f, "cuda"),
1024 GpuBackend::OpenCl { .. } => write!(f, "opencl"),
1025 GpuBackend::Cpu => write!(f, "cpu"),
1026 }
1027 }
1028}
1029
1030#[derive(Debug, Clone)]
1034pub struct AIPerformancePredictor {
1035 training_data: Vec<PerformanceDataPoint>,
1037 model_weights: Vec<f64>,
1039 feature_means: Vec<f64>,
1041 feature_stds: Vec<f64>,
1042 accuracy_metrics: PredictionAccuracy,
1044}
1045
1046#[derive(Debug, Clone)]
1048#[allow(dead_code)]
1049pub struct PerformanceDataPoint {
1050 features: Vec<f64>,
1052 target_performance: f64,
1054 execution_time: f64,
1056}
1057
1058#[derive(Debug, Clone)]
1060pub struct PredictionAccuracy {
1061 mae: f64,
1063 rmse: f64,
1065 r_squared: f64,
1067 sample_count: usize,
1069}
1070
1071impl Default for AIPerformancePredictor {
1072 fn default() -> Self {
1073 Self {
1074 training_data: Vec::new(),
1075 model_weights: vec![0.1, 0.2, 0.3, 0.4, 0.5], feature_means: vec![0.0; 4],
1077 feature_stds: vec![1.0; 4],
1078 accuracy_metrics: PredictionAccuracy {
1079 mae: 0.0,
1080 rmse: 0.0,
1081 r_squared: 0.0,
1082 sample_count: 0,
1083 },
1084 }
1085 }
1086}
1087
1088impl AIPerformancePredictor {
1089 pub fn new() -> Self {
1091 Self::default()
1092 }
1093
1094 pub fn add_training_data(&mut self, datapoint: PerformanceDataPoint) {
1096 self.training_data.push(datapoint);
1097
1098 if self.training_data.len().is_multiple_of(100) && self.training_data.len() > 50 {
1100 self.retrain_model();
1101 }
1102 }
1103
1104 pub fn predict_performance(&self, features: &[f64]) -> f64 {
1106 if features.len() != 4 {
1107 return 0.5; }
1109
1110 let normalized_features: Vec<f64> = features
1112 .iter()
1113 .zip(&self.feature_means)
1114 .zip(&self.feature_stds)
1115 .map(|((feat, mean), std)| (feat - mean) / std)
1116 .collect();
1117
1118 let prediction: f64 = normalized_features
1120 .iter()
1121 .zip(&self.model_weights)
1122 .map(|(feat, weight)| feat * weight)
1123 .sum();
1124
1125 (1.0 / (1.0 + (-prediction).exp())).clamp(0.0, 1.0)
1127 }
1128
1129 fn retrain_model(&mut self) {
1131 if self.training_data.len() < 10 {
1132 return;
1133 }
1134
1135 self.update_normalization_params();
1137
1138 let learning_rate = 0.01;
1140 let epochs = 100;
1141
1142 for _ in 0..epochs {
1143 let mut gradients = [0.0; 5];
1144
1145 for data_point in &self.training_data {
1146 let prediction = self.predict_performance(&data_point.features);
1147 let error = prediction - data_point.target_performance;
1148
1149 for (i, gradient) in gradients.iter_mut().enumerate().take(4) {
1151 *gradient += error * data_point.features[i] / self.training_data.len() as f64;
1152 }
1153 gradients[4] += error / self.training_data.len() as f64; }
1155
1156 for (weight, gradient) in self.model_weights.iter_mut().zip(gradients.iter()) {
1158 *weight -= learning_rate * gradient;
1159 }
1160 }
1161
1162 self.update_accuracy_metrics();
1164 }
1165
1166 fn update_normalization_params(&mut self) {
1168 let n = self.training_data.len() as f64;
1169
1170 for i in 0..4 {
1172 self.feature_means[i] = self
1173 .training_data
1174 .iter()
1175 .map(|dp| dp.features[i])
1176 .sum::<f64>()
1177 / n;
1178 }
1179
1180 for i in 0..4 {
1182 let variance = self
1183 .training_data
1184 .iter()
1185 .map(|dp| (dp.features[i] - self.feature_means[i]).powi(2))
1186 .sum::<f64>()
1187 / n;
1188 self.feature_stds[i] = variance.sqrt().max(1e-8); }
1190 }
1191
1192 fn update_accuracy_metrics(&mut self) {
1194 let predictions: Vec<f64> = self
1195 .training_data
1196 .iter()
1197 .map(|dp| self.predict_performance(&dp.features))
1198 .collect();
1199
1200 let targets: Vec<f64> = self
1201 .training_data
1202 .iter()
1203 .map(|dp| dp.target_performance)
1204 .collect();
1205
1206 self.accuracy_metrics.mae = predictions
1208 .iter()
1209 .zip(&targets)
1210 .map(|(pred, target)| (pred - target).abs())
1211 .sum::<f64>()
1212 / predictions.len() as f64;
1213
1214 let mse = predictions
1216 .iter()
1217 .zip(&targets)
1218 .map(|(pred, target)| (pred - target).powi(2))
1219 .sum::<f64>()
1220 / predictions.len() as f64;
1221 self.accuracy_metrics.rmse = mse.sqrt();
1222
1223 let target_mean = targets.iter().sum::<f64>() / targets.len() as f64;
1225 let ss_tot = targets
1226 .iter()
1227 .map(|target| (target - target_mean).powi(2))
1228 .sum::<f64>();
1229 let ss_res = predictions
1230 .iter()
1231 .zip(&targets)
1232 .map(|(pred, target)| (target - pred).powi(2))
1233 .sum::<f64>();
1234
1235 self.accuracy_metrics.r_squared = if ss_tot > 0.0 {
1236 1.0 - (ss_res / ss_tot)
1237 } else {
1238 0.0
1239 };
1240
1241 self.accuracy_metrics.sample_count = self.training_data.len();
1242 }
1243
1244 pub fn get_accuracy_metrics(&self) -> &PredictionAccuracy {
1246 &self.accuracy_metrics
1247 }
1248}
1249
1250#[derive(Debug)]
1252pub struct RealTimePerformanceMonitor {
1253 performance_history: std::collections::VecDeque<PerformanceSnapshot>,
1255 current_optimization: AdaptiveOptimizationState,
1257 config: MonitoringConfig,
1259 ai_predictor: AIPerformancePredictor,
1261}
1262
1263#[derive(Debug, Clone)]
1265#[allow(dead_code)]
1266pub struct PerformanceSnapshot {
1267 timestamp: std::time::Instant,
1269 execution_time_ms: f64,
1271 memory_usage_bytes: usize,
1273 gpu_utilization: f64,
1275 memory_bandwidth_utilization: f64,
1277 operation: String,
1279 datashape: (usize, usize),
1281}
1282
1283#[derive(Debug, Clone)]
1285#[allow(dead_code)]
1286pub struct AdaptiveOptimizationState {
1287 trend: PerformanceTrend,
1289 adjustments: Vec<OptimizationAdjustment>,
1291 learning_rate: f64,
1293 stability_threshold: f64,
1295}
1296
1297#[derive(Debug, Clone, Copy)]
1299pub enum PerformanceTrend {
1300 Improving,
1302 Degrading,
1304 Stable,
1306 Unknown,
1308}
1309
1310#[derive(Debug, Clone)]
1312#[allow(dead_code)]
1313pub struct OptimizationAdjustment {
1314 adjustment_type: AdjustmentType,
1316 previous_value: f64,
1318 new_value: f64,
1320 performance_impact: f64,
1322 timestamp: std::time::Instant,
1324}
1325
1326#[derive(Debug, Clone, Copy)]
1328pub enum AdjustmentType {
1329 BlockSize,
1331 MemoryPattern,
1333 Vectorization,
1335 LoadBalancing,
1337}
1338
1339#[derive(Debug, Clone)]
1341#[allow(dead_code)]
1342pub struct MonitoringConfig {
1343 max_history_size: usize,
1345 min_samples_for_trend: usize,
1347 degradation_threshold: f64,
1349 adaptive_optimization_enabled: bool,
1351}
1352
1353impl Default for MonitoringConfig {
1354 fn default() -> Self {
1355 Self {
1356 max_history_size: 1000,
1357 min_samples_for_trend: 10,
1358 degradation_threshold: 0.05, adaptive_optimization_enabled: true,
1360 }
1361 }
1362}
1363
1364impl Default for RealTimePerformanceMonitor {
1365 fn default() -> Self {
1366 Self::with_config(MonitoringConfig::default())
1367 }
1368}
1369
1370impl RealTimePerformanceMonitor {
1371 pub fn new() -> Self {
1373 Self::default()
1374 }
1375
1376 pub fn with_config(config: MonitoringConfig) -> Self {
1378 Self {
1379 performance_history: std::collections::VecDeque::with_capacity(config.max_history_size),
1380 current_optimization: AdaptiveOptimizationState {
1381 trend: PerformanceTrend::Unknown,
1382 adjustments: Vec::new(),
1383 learning_rate: 0.1,
1384 stability_threshold: 0.02,
1385 },
1386 config,
1387 ai_predictor: AIPerformancePredictor::new(),
1388 }
1389 }
1390
1391 pub fn record_performance(&mut self, snapshot: PerformanceSnapshot) {
1393 if self.performance_history.len() >= self.config.max_history_size {
1395 self.performance_history.pop_front();
1396 }
1397 self.performance_history.push_back(snapshot.clone());
1398
1399 let features = vec![
1401 (snapshot.datashape.0 * snapshot.datashape.1) as f64, snapshot.memory_bandwidth_utilization, snapshot.gpu_utilization, 1.0, ];
1406
1407 let performance_score = 1.0 / (1.0 + snapshot.execution_time_ms / 1000.0); self.ai_predictor.add_training_data(PerformanceDataPoint {
1410 features,
1411 target_performance: performance_score,
1412 execution_time: snapshot.execution_time_ms,
1413 });
1414
1415 self.analyze_trend_and_adapt();
1417 }
1418
1419 fn analyze_trend_and_adapt(&mut self) {
1421 if self.performance_history.len() < self.config.min_samples_for_trend {
1422 return;
1423 }
1424
1425 let recent_samples = self.performance_history.len().min(20);
1427 let recent_performances: Vec<f64> = self
1428 .performance_history
1429 .iter()
1430 .rev()
1431 .take(recent_samples)
1432 .map(|snapshot| 1.0 / (1.0 + snapshot.execution_time_ms / 1000.0))
1433 .collect();
1434
1435 let trend = self.calculate_trend(&recent_performances);
1436 self.current_optimization.trend = trend;
1437
1438 if matches!(trend, PerformanceTrend::Degrading) && self.config.adaptive_optimization_enabled
1440 {
1441 self.trigger_adaptive_optimization();
1442 }
1443 }
1444
1445 fn calculate_trend(&self, performances: &[f64]) -> PerformanceTrend {
1447 if performances.len() < 3 {
1448 return PerformanceTrend::Unknown;
1449 }
1450
1451 let n = performances.len() as f64;
1453 let x_mean = (n - 1.0) / 2.0; let y_mean = performances.iter().sum::<f64>() / n;
1455
1456 let mut numerator = 0.0;
1457 let mut denominator = 0.0;
1458
1459 for (i, &y) in performances.iter().enumerate() {
1460 let x = i as f64;
1461 numerator += (x - x_mean) * (y - y_mean);
1462 denominator += (x - x_mean).powi(2);
1463 }
1464
1465 let slope = if denominator != 0.0 {
1466 numerator / denominator
1467 } else {
1468 0.0
1469 };
1470
1471 if slope > self.current_optimization.stability_threshold {
1472 PerformanceTrend::Improving
1473 } else if slope < -self.current_optimization.stability_threshold {
1474 PerformanceTrend::Degrading
1475 } else {
1476 PerformanceTrend::Stable
1477 }
1478 }
1479
1480 fn trigger_adaptive_optimization(&mut self) {
1482 if let Some(latest_snapshot) = self.performance_history.back() {
1484 let current_features = vec![
1485 (latest_snapshot.datashape.0 * latest_snapshot.datashape.1) as f64,
1486 latest_snapshot.memory_bandwidth_utilization,
1487 latest_snapshot.gpu_utilization,
1488 1.0,
1489 ];
1490
1491 let predicted_performance = self.ai_predictor.predict_performance(¤t_features);
1492
1493 if predicted_performance < 0.7 {
1495 let adjustment = OptimizationAdjustment {
1496 adjustment_type: AdjustmentType::BlockSize,
1497 previous_value: 256.0,
1498 new_value: 512.0, performance_impact: 0.0, timestamp: std::time::Instant::now(),
1501 };
1502
1503 self.current_optimization.adjustments.push(adjustment);
1504 }
1505 }
1506 }
1507
1508 pub fn get_current_trend(&self) -> PerformanceTrend {
1510 self.current_optimization.trend
1511 }
1512
1513 pub fn get_performance_stats(&self) -> PerformanceStats {
1515 if self.performance_history.is_empty() {
1516 return PerformanceStats::default();
1517 }
1518
1519 let execution_times: Vec<f64> = self
1520 .performance_history
1521 .iter()
1522 .map(|snapshot| snapshot.execution_time_ms)
1523 .collect();
1524
1525 let mean_execution_time =
1526 execution_times.iter().sum::<f64>() / execution_times.len() as f64;
1527 let min_execution_time = execution_times.iter().fold(f64::INFINITY, |a, &b| a.min(b));
1528 let max_execution_time = execution_times.iter().fold(0.0f64, |a, &b| a.max(b));
1529
1530 let mean_gpu_utilization = self
1531 .performance_history
1532 .iter()
1533 .map(|snapshot| snapshot.gpu_utilization)
1534 .sum::<f64>()
1535 / self.performance_history.len() as f64;
1536
1537 PerformanceStats {
1538 mean_execution_time_ms: mean_execution_time,
1539 min_execution_time_ms: min_execution_time,
1540 max_execution_time_ms: max_execution_time,
1541 mean_gpu_utilization,
1542 sample_count: self.performance_history.len(),
1543 ai_model_accuracy: self.ai_predictor.get_accuracy_metrics().r_squared,
1544 }
1545 }
1546}
1547
1548#[derive(Debug, Clone)]
1550pub struct PerformanceStats {
1551 pub mean_execution_time_ms: f64,
1553 pub min_execution_time_ms: f64,
1555 pub max_execution_time_ms: f64,
1557 pub mean_gpu_utilization: f64,
1559 pub sample_count: usize,
1561 pub ai_model_accuracy: f64,
1563}
1564
1565impl Default for PerformanceStats {
1566 fn default() -> Self {
1567 Self {
1568 mean_execution_time_ms: 0.0,
1569 min_execution_time_ms: 0.0,
1570 max_execution_time_ms: 0.0,
1571 mean_gpu_utilization: 0.0,
1572 sample_count: 0,
1573 ai_model_accuracy: 0.0,
1574 }
1575 }
1576}
1577
1578impl AdvancedGpuOptimizer {
1580 pub fn with_ai_monitoring() -> Self {
1582 Self::new()
1584 }
1585
1586 pub fn predict_optimal_config(
1588 &self,
1589 operation: &str,
1590 datashape: (usize, usize),
1591 historical_data: &[PerformanceDataPoint],
1592 ) -> Result<AdvancedKernelConfig> {
1593 let mut ai_predictor = AIPerformancePredictor::new();
1594
1595 for data_point in historical_data {
1597 ai_predictor.add_training_data(data_point.clone());
1598 }
1599
1600 let features = vec![
1602 (datashape.0 * datashape.1) as f64,
1603 1.0, self.estimate_compute_utilization(operation, datashape),
1605 1.0, ];
1607
1608 let predicted_performance = ai_predictor.predict_performance(&features);
1609
1610 let specialization_level = if predicted_performance > 0.8 {
1612 SpecializationLevel::AIOptimized
1613 } else if predicted_performance > 0.6 {
1614 SpecializationLevel::AdvancedSpecialized
1615 } else {
1616 SpecializationLevel::HardwareOptimized
1617 };
1618
1619 Ok(AdvancedKernelConfig {
1620 specialization_level,
1621 memory_pattern: MemoryAccessPattern::Sequential,
1622 vectorization: VectorizationStrategy::Adaptive,
1623 load_balancing: LoadBalancingMethod::Adaptive,
1624 block_size: 256,
1625 })
1626 }
1627}
1628
1629#[cfg(test)]
1630mod tests {
1631 use super::*;
1632
1633 #[test]
1634 fn test_advanced_gpu_optimizer_creation() {
1635 let optimizer = AdvancedGpuOptimizer::new();
1636 assert!(optimizer.adaptive_kernels);
1637 assert!(optimizer.auto_tuning);
1638 }
1639
1640 #[test]
1641 fn test_performance_calculation() {
1642 let optimizer = AdvancedGpuOptimizer::new();
1643 let score = optimizer.calculate_performance_score(256, 1e6, 0.8);
1644 assert!((0.0..=1.0).contains(&score));
1645 }
1646
1647 #[test]
1648 fn test_advanced_cpu_generation() {
1649 let optimizer = AdvancedGpuOptimizer::new();
1650 let result = optimizer.execute_advanced_cpu_generation(10, 10, "normal");
1651 assert!(result.is_ok());
1652 let matrix = result.unwrap();
1653 assert_eq!(matrix.shape(), &[10, 10]);
1654 }
1655}