pub struct AdvancedGpuOptimizer { /* private fields */ }Expand description
Advanced-advanced GPU performance optimizer
Implementations§
Source§impl AdvancedGpuOptimizer
impl AdvancedGpuOptimizer
Sourcepub fn new() -> Self
pub fn new() -> Self
Create a new advanced GPU optimizer
Examples found in repository?
examples/advanced_showcase.rs (line 145)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Sourcepub fn with_adaptive_kernels(self, enabled: bool) -> Self
pub fn with_adaptive_kernels(self, enabled: bool) -> Self
Configure adaptive kernel selection
Examples found in repository?
examples/advanced_showcase.rs (line 146)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Sourcepub fn with_memory_prefetch(self, enabled: bool) -> Self
pub fn with_memory_prefetch(self, enabled: bool) -> Self
Configure memory prefetching
Examples found in repository?
examples/advanced_showcase.rs (line 147)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Sourcepub fn with_multi_gpu(self, enabled: bool) -> Self
pub fn with_multi_gpu(self, enabled: bool) -> Self
Configure multi-GPU coordination
Examples found in repository?
examples/advanced_showcase.rs (line 148)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Sourcepub fn with_auto_tuning(self, enabled: bool) -> Self
pub fn with_auto_tuning(self, enabled: bool) -> Self
Configure auto-tuning
Examples found in repository?
examples/advanced_showcase.rs (line 149)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Sourcepub fn optimize_execution(
&self,
gpu_context: &GpuContext,
operation: &str,
datashape: (usize, usize),
) -> Result<AdvancedKernelConfig>
pub fn optimize_execution( &self, gpu_context: &GpuContext, operation: &str, datashape: (usize, usize), ) -> Result<AdvancedKernelConfig>
Optimize GPU execution for a specific operation
Sourcepub fn generate_advanced_optimized_matrix(
&self,
gpu_context: &GpuContext,
rows: usize,
cols: usize,
distribution: &str,
) -> Result<Array2<f64>>
pub fn generate_advanced_optimized_matrix( &self, gpu_context: &GpuContext, rows: usize, cols: usize, distribution: &str, ) -> Result<Array2<f64>>
Advanced-optimized matrix generation on GPU
Examples found in repository?
examples/advanced_showcase.rs (lines 154-159)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Sourcepub fn benchmark_performance(
&self,
gpu_context: &GpuContext,
operation: &str,
datashapes: &[(usize, usize)],
) -> Result<PerformanceBenchmarkResults>
pub fn benchmark_performance( &self, gpu_context: &GpuContext, operation: &str, datashapes: &[(usize, usize)], ) -> Result<PerformanceBenchmarkResults>
Benchmark GPU vs CPU performance
Examples found in repository?
examples/advanced_showcase.rs (line 179)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 threads_per_block: 1, // CPU backend only supports 1 thread per block
139 ..Default::default()
140 };
141 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142 println!(" Backend: {:?}", gpu_context.backend());
143
144 // Create advanced-GPU optimizer
145 let optimizer = AdvancedGpuOptimizer::new()
146 .with_adaptive_kernels(true)
147 .with_memory_prefetch(true)
148 .with_multi_gpu(false) // Single GPU for demo
149 .with_auto_tuning(true);
150
151 // Generate advanced-optimized matrix
152 println!("🔥 Generating advanced-optimized matrix...");
153 let start_time = Instant::now();
154 let matrix = optimizer.generate_advanced_optimized_matrix(
155 &gpu_context,
156 500, // rows
157 200, // cols
158 "normal", // distribution
159 )?;
160 let generation_time = start_time.elapsed();
161
162 println!(
163 " Generated {}x{} matrix in: {:?}",
164 matrix.nrows(),
165 matrix.ncols(),
166 generation_time
167 );
168 let matrix_mean = matrix.clone().mean();
169 let matrix_std = matrix.var(1.0).sqrt();
170 println!(
171 " Matrix stats: mean={:.3}, std={:.3}",
172 matrix_mean, matrix_std
173 );
174
175 // Benchmark performance
176 println!("📊 Running performance benchmarks...");
177 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178 let benchmark_results =
179 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181 println!(" Benchmark Results:");
182 println!(
183 " Best Speedup: {:.2}x",
184 benchmark_results.best_speedup()
185 );
186 println!(
187 " Average Speedup: {:.2}x",
188 benchmark_results.average_speedup()
189 );
190 println!(
191 " Total Memory Usage: {:.1} MB",
192 benchmark_results.total_memory_usage()
193 );
194
195 Ok(())
196}Source§impl AdvancedGpuOptimizer
Enhanced AdvancedGpuOptimizer with AI and real-time monitoring
impl AdvancedGpuOptimizer
Enhanced AdvancedGpuOptimizer with AI and real-time monitoring
Sourcepub fn with_ai_monitoring() -> Self
pub fn with_ai_monitoring() -> Self
Create optimizer with AI-driven optimization and real-time monitoring
Sourcepub fn predict_optimal_config(
&self,
operation: &str,
datashape: (usize, usize),
historical_data: &[PerformanceDataPoint],
) -> Result<AdvancedKernelConfig>
pub fn predict_optimal_config( &self, operation: &str, datashape: (usize, usize), historical_data: &[PerformanceDataPoint], ) -> Result<AdvancedKernelConfig>
Predict optimal configuration using AI
Trait Implementations§
Source§impl Clone for AdvancedGpuOptimizer
impl Clone for AdvancedGpuOptimizer
Source§fn clone(&self) -> AdvancedGpuOptimizer
fn clone(&self) -> AdvancedGpuOptimizer
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl Debug for AdvancedGpuOptimizer
impl Debug for AdvancedGpuOptimizer
Auto Trait Implementations§
impl Freeze for AdvancedGpuOptimizer
impl RefUnwindSafe for AdvancedGpuOptimizer
impl Send for AdvancedGpuOptimizer
impl Sync for AdvancedGpuOptimizer
impl Unpin for AdvancedGpuOptimizer
impl UnwindSafe for AdvancedGpuOptimizer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.