GpuContext

Struct GpuContext 

Source
pub struct GpuContext { /* private fields */ }
Expand description

GPU context for managing device operations

Implementations§

Source§

impl GpuContext

Source

pub fn new(config: GpuConfig) -> Result<Self>

Create a new GPU context

Examples found in repository?
examples/advanced_showcase.rs (line 141)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131    println!("\n⚡ Advanced-GPU Optimization Demonstration");
132    println!("=====================================");
133
134    // Create GPU context (falls back to CPU if no GPU available)
135    println!("🔧 Initializing GPU context...");
136    let gpu_config = GpuConfig {
137        backend: GpuBackend::Cpu,
138        threads_per_block: 1, // CPU backend only supports 1 thread per block
139        ..Default::default()
140    };
141    let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142    println!("   Backend: {:?}", gpu_context.backend());
143
144    // Create advanced-GPU optimizer
145    let optimizer = AdvancedGpuOptimizer::new()
146        .with_adaptive_kernels(true)
147        .with_memory_prefetch(true)
148        .with_multi_gpu(false) // Single GPU for demo
149        .with_auto_tuning(true);
150
151    // Generate advanced-optimized matrix
152    println!("🔥 Generating advanced-optimized matrix...");
153    let start_time = Instant::now();
154    let matrix = optimizer.generate_advanced_optimized_matrix(
155        &gpu_context,
156        500,      // rows
157        200,      // cols
158        "normal", // distribution
159    )?;
160    let generation_time = start_time.elapsed();
161
162    println!(
163        "   Generated {}x{} matrix in: {:?}",
164        matrix.nrows(),
165        matrix.ncols(),
166        generation_time
167    );
168    let matrix_mean = matrix.clone().mean();
169    let matrix_std = matrix.var(1.0).sqrt();
170    println!(
171        "   Matrix stats: mean={:.3}, std={:.3}",
172        matrix_mean, matrix_std
173    );
174
175    // Benchmark performance
176    println!("📊 Running performance benchmarks...");
177    let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178    let benchmark_results =
179        optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181    println!("   Benchmark Results:");
182    println!(
183        "     Best Speedup: {:.2}x",
184        benchmark_results.best_speedup()
185    );
186    println!(
187        "     Average Speedup: {:.2}x",
188        benchmark_results.average_speedup()
189    );
190    println!(
191        "     Total Memory Usage: {:.1} MB",
192        benchmark_results.total_memory_usage()
193    );
194
195    Ok(())
196}
More examples
Hide additional examples
examples/gpu_acceleration.rs (line 172)
138fn demonstrate_backend_comparison() -> Result<(), Box<dyn std::error::Error>> {
139    println!("⚡ GPU BACKEND COMPARISON");
140    println!("{}", "-".repeat(40));
141
142    let testsize = 50_000;
143    let features = 20;
144
145    println!("Comparing backends for {testsize} samples with {features} features:");
146
147    // Test different backends
148    let backends = vec![
149        ("CPU Fallback", GpuBackend::Cpu),
150        ("CUDA", GpuBackend::Cuda { device_id: 0 }),
151        (
152            "OpenCL",
153            GpuBackend::OpenCl {
154                platform_id: 0,
155                device_id: 0,
156            },
157        ),
158    ];
159
160    let mut results: HashMap<String, std::time::Duration> = HashMap::new();
161
162    for (name, backend) in backends {
163        println!("\nTesting {name}:");
164
165        let config = GpuConfig {
166            backend: backend.clone(),
167            threads_per_block: 256,
168            enable_double_precision: true,
169            ..Default::default()
170        };
171
172        match GpuContext::new(config) {
173            Ok(context) => {
174                if context.is_available() {
175                    // Test classification generation
176                    let start = Instant::now();
177                    let dataset =
178                        context.make_classification_gpu(testsize, features, 5, 2, 15, Some(42))?;
179                    let duration = start.elapsed();
180
181                    results.insert(name.to_string(), duration);
182
183                    println!(
184                        "  ✅ Classification: {} samples in {:.2}ms",
185                        dataset.n_samples(),
186                        duration.as_millis()
187                    );
188                    println!(
189                        "  📊 Throughput: {:.1} samples/s",
190                        dataset.n_samples() as f64 / duration.as_secs_f64()
191                    );
192                } else {
193                    println!("  ❌ Backend not available");
194                }
195            }
196            Err(e) => {
197                println!("  ❌ Error: {e}");
198            }
199        }
200    }
201
202    // Calculate speedups
203    if let Some(cpu_time) = results.get("CPU Fallback") {
204        println!("\nSpeedup Analysis:");
205        for (backend, gpu_time) in &results {
206            if backend != "CPU Fallback" {
207                let speedup = cpu_time.as_secs_f64() / gpu_time.as_secs_f64();
208                println!("  {backend}: {speedup:.1}x faster than CPU");
209            }
210        }
211    }
212
213    println!();
214    Ok(())
215}
216
217#[allow(dead_code)]
218fn demonstrate_performance_benchmarks() -> Result<(), Box<dyn std::error::Error>> {
219    println!("📊 PERFORMANCE BENCHMARKS");
220    println!("{}", "-".repeat(40));
221
222    let config = get_optimal_gpu_config();
223    let benchmark = GpuBenchmark::new(config)?;
224
225    println!("Running data generation benchmarks...");
226    let data_results = benchmark.benchmark_data_generation()?;
227    data_results.print_results();
228
229    println!("\nRunning matrix operation benchmarks...");
230    let matrix_results = benchmark.benchmark_matrix_operations()?;
231    matrix_results.print_results();
232
233    // Compare with CPU baseline
234    println!("\nCPU vs GPU Comparison:");
235    demonstrate_cpu_gpu_comparison()?;
236
237    println!();
238    Ok(())
239}
240
241#[allow(dead_code)]
242fn demonstrate_cpu_gpu_comparison() -> Result<(), Box<dyn std::error::Error>> {
243    let dataset_sizes = vec![10_000, 50_000, 100_000];
244
245    println!(
246        "{:<12} {:<15} {:<15} {:<10}",
247        "Size", "CPU Time", "GPU Time", "Speedup"
248    );
249    println!("{}", "-".repeat(55));
250
251    for &size in &dataset_sizes {
252        // CPU benchmark
253        let cpu_start = Instant::now();
254        let _cpudataset = make_classification(size, 20, 5, 2, 15, Some(42))?;
255        let cpu_time = cpu_start.elapsed();
256
257        // GPU benchmark
258        let gpu_start = Instant::now();
259        let _gpudataset = make_classification_auto_gpu(size, 20, 5, 2, 15, Some(42))?;
260        let gpu_time = gpu_start.elapsed();
261
262        let speedup = cpu_time.as_secs_f64() / gpu_time.as_secs_f64();
263
264        println!(
265            "{:<12} {:<15} {:<15} {:<10.1}x",
266            size,
267            format!("{:.1}ms", cpu_time.as_millis()),
268            format!("{:.1}ms", gpu_time.as_millis()),
269            speedup
270        );
271    }
272
273    Ok(())
274}
275
276#[allow(dead_code)]
277fn demonstrate_memory_management() -> Result<(), Box<dyn std::error::Error>> {
278    println!("💾 GPU MEMORY MANAGEMENT");
279    println!("{}", "-".repeat(40));
280
281    // Configure memory-constrained GPU context
282    let memory_config = GpuMemoryConfig {
283        max_memory_mb: Some(512),  // Limit to 512MB
284        pool_size_mb: 256,         // 256MB pool
285        enable_coalescing: true,   // Enable memory coalescing
286        use_unified_memory: false, // Don't use unified memory
287    };
288
289    let gpu_config = GpuConfig {
290        backend: get_optimal_gpu_config().backend,
291        memory: memory_config,
292        threads_per_block: 256,
293        ..Default::default()
294    };
295
296    println!("Memory Configuration:");
297    println!(
298        "  Max Memory: {} MB",
299        gpu_config.memory.max_memory_mb.unwrap_or(0)
300    );
301    println!("  Pool Size: {} MB", gpu_config.memory.pool_size_mb);
302    println!("  Coalescing: {}", gpu_config.memory.enable_coalescing);
303    println!("  Unified Memory: {}", gpu_config.memory.use_unified_memory);
304
305    let context = GpuContext::new(gpu_config)?;
306    let device_info = context.device_info();
307
308    println!("\nDevice Memory Info:");
309    println!("  Total: {} MB", device_info.total_memory_mb);
310    println!("  Available: {} MB", device_info.available_memory_mb);
311    println!(
312        "  Utilization: {:.1}%",
313        (device_info.total_memory_mb - device_info.available_memory_mb) as f64
314            / device_info.total_memory_mb as f64
315            * 100.0
316    );
317
318    // Test memory-efficient generation
319    println!("\nTesting memory-efficient dataset generation...");
320
321    let sizes = vec![10_000, 25_000, 50_000];
322    for &size in &sizes {
323        let start = Instant::now();
324
325        match context.make_regression_gpu(size, 50, 30, 0.1, Some(42)) {
326            Ok(dataset) => {
327                let duration = start.elapsed();
328                let memory_estimate = dataset.n_samples() * dataset.n_features() * 8; // 8 bytes per f64
329
330                println!(
331                    "  {} samples: {:.1}ms (~{:.1} MB)",
332                    size,
333                    duration.as_millis(),
334                    memory_estimate as f64 / (1024.0 * 1024.0)
335                );
336            }
337            Err(e) => {
338                println!("  {size} samples: Failed - {e}");
339            }
340        }
341    }
342
343    println!();
344    Ok(())
345}
Source

pub fn device_info(&self) -> &GpuDeviceInfo

Get device information

Examples found in repository?
examples/gpu_acceleration.rs (line 306)
277fn demonstrate_memory_management() -> Result<(), Box<dyn std::error::Error>> {
278    println!("💾 GPU MEMORY MANAGEMENT");
279    println!("{}", "-".repeat(40));
280
281    // Configure memory-constrained GPU context
282    let memory_config = GpuMemoryConfig {
283        max_memory_mb: Some(512),  // Limit to 512MB
284        pool_size_mb: 256,         // 256MB pool
285        enable_coalescing: true,   // Enable memory coalescing
286        use_unified_memory: false, // Don't use unified memory
287    };
288
289    let gpu_config = GpuConfig {
290        backend: get_optimal_gpu_config().backend,
291        memory: memory_config,
292        threads_per_block: 256,
293        ..Default::default()
294    };
295
296    println!("Memory Configuration:");
297    println!(
298        "  Max Memory: {} MB",
299        gpu_config.memory.max_memory_mb.unwrap_or(0)
300    );
301    println!("  Pool Size: {} MB", gpu_config.memory.pool_size_mb);
302    println!("  Coalescing: {}", gpu_config.memory.enable_coalescing);
303    println!("  Unified Memory: {}", gpu_config.memory.use_unified_memory);
304
305    let context = GpuContext::new(gpu_config)?;
306    let device_info = context.device_info();
307
308    println!("\nDevice Memory Info:");
309    println!("  Total: {} MB", device_info.total_memory_mb);
310    println!("  Available: {} MB", device_info.available_memory_mb);
311    println!(
312        "  Utilization: {:.1}%",
313        (device_info.total_memory_mb - device_info.available_memory_mb) as f64
314            / device_info.total_memory_mb as f64
315            * 100.0
316    );
317
318    // Test memory-efficient generation
319    println!("\nTesting memory-efficient dataset generation...");
320
321    let sizes = vec![10_000, 25_000, 50_000];
322    for &size in &sizes {
323        let start = Instant::now();
324
325        match context.make_regression_gpu(size, 50, 30, 0.1, Some(42)) {
326            Ok(dataset) => {
327                let duration = start.elapsed();
328                let memory_estimate = dataset.n_samples() * dataset.n_features() * 8; // 8 bytes per f64
329
330                println!(
331                    "  {} samples: {:.1}ms (~{:.1} MB)",
332                    size,
333                    duration.as_millis(),
334                    memory_estimate as f64 / (1024.0 * 1024.0)
335                );
336            }
337            Err(e) => {
338                println!("  {size} samples: Failed - {e}");
339            }
340        }
341    }
342
343    println!();
344    Ok(())
345}
Source

pub fn backend(&self) -> &GpuBackend

Get the backend type

Examples found in repository?
examples/advanced_showcase.rs (line 142)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131    println!("\n⚡ Advanced-GPU Optimization Demonstration");
132    println!("=====================================");
133
134    // Create GPU context (falls back to CPU if no GPU available)
135    println!("🔧 Initializing GPU context...");
136    let gpu_config = GpuConfig {
137        backend: GpuBackend::Cpu,
138        threads_per_block: 1, // CPU backend only supports 1 thread per block
139        ..Default::default()
140    };
141    let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
142    println!("   Backend: {:?}", gpu_context.backend());
143
144    // Create advanced-GPU optimizer
145    let optimizer = AdvancedGpuOptimizer::new()
146        .with_adaptive_kernels(true)
147        .with_memory_prefetch(true)
148        .with_multi_gpu(false) // Single GPU for demo
149        .with_auto_tuning(true);
150
151    // Generate advanced-optimized matrix
152    println!("🔥 Generating advanced-optimized matrix...");
153    let start_time = Instant::now();
154    let matrix = optimizer.generate_advanced_optimized_matrix(
155        &gpu_context,
156        500,      // rows
157        200,      // cols
158        "normal", // distribution
159    )?;
160    let generation_time = start_time.elapsed();
161
162    println!(
163        "   Generated {}x{} matrix in: {:?}",
164        matrix.nrows(),
165        matrix.ncols(),
166        generation_time
167    );
168    let matrix_mean = matrix.clone().mean();
169    let matrix_std = matrix.var(1.0).sqrt();
170    println!(
171        "   Matrix stats: mean={:.3}, std={:.3}",
172        matrix_mean, matrix_std
173    );
174
175    // Benchmark performance
176    println!("📊 Running performance benchmarks...");
177    let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
178    let benchmark_results =
179        optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
180
181    println!("   Benchmark Results:");
182    println!(
183        "     Best Speedup: {:.2}x",
184        benchmark_results.best_speedup()
185    );
186    println!(
187        "     Average Speedup: {:.2}x",
188        benchmark_results.average_speedup()
189    );
190    println!(
191        "     Total Memory Usage: {:.1} MB",
192        benchmark_results.total_memory_usage()
193    );
194
195    Ok(())
196}
Source

pub fn is_available(&self) -> bool

Check if GPU is available and functional

Examples found in repository?
examples/gpu_acceleration.rs (line 174)
138fn demonstrate_backend_comparison() -> Result<(), Box<dyn std::error::Error>> {
139    println!("⚡ GPU BACKEND COMPARISON");
140    println!("{}", "-".repeat(40));
141
142    let testsize = 50_000;
143    let features = 20;
144
145    println!("Comparing backends for {testsize} samples with {features} features:");
146
147    // Test different backends
148    let backends = vec![
149        ("CPU Fallback", GpuBackend::Cpu),
150        ("CUDA", GpuBackend::Cuda { device_id: 0 }),
151        (
152            "OpenCL",
153            GpuBackend::OpenCl {
154                platform_id: 0,
155                device_id: 0,
156            },
157        ),
158    ];
159
160    let mut results: HashMap<String, std::time::Duration> = HashMap::new();
161
162    for (name, backend) in backends {
163        println!("\nTesting {name}:");
164
165        let config = GpuConfig {
166            backend: backend.clone(),
167            threads_per_block: 256,
168            enable_double_precision: true,
169            ..Default::default()
170        };
171
172        match GpuContext::new(config) {
173            Ok(context) => {
174                if context.is_available() {
175                    // Test classification generation
176                    let start = Instant::now();
177                    let dataset =
178                        context.make_classification_gpu(testsize, features, 5, 2, 15, Some(42))?;
179                    let duration = start.elapsed();
180
181                    results.insert(name.to_string(), duration);
182
183                    println!(
184                        "  ✅ Classification: {} samples in {:.2}ms",
185                        dataset.n_samples(),
186                        duration.as_millis()
187                    );
188                    println!(
189                        "  📊 Throughput: {:.1} samples/s",
190                        dataset.n_samples() as f64 / duration.as_secs_f64()
191                    );
192                } else {
193                    println!("  ❌ Backend not available");
194                }
195            }
196            Err(e) => {
197                println!("  ❌ Error: {e}");
198            }
199        }
200    }
201
202    // Calculate speedups
203    if let Some(cpu_time) = results.get("CPU Fallback") {
204        println!("\nSpeedup Analysis:");
205        for (backend, gpu_time) in &results {
206            if backend != "CPU Fallback" {
207                let speedup = cpu_time.as_secs_f64() / gpu_time.as_secs_f64();
208                println!("  {backend}: {speedup:.1}x faster than CPU");
209            }
210        }
211    }
212
213    println!();
214    Ok(())
215}
Source

pub fn make_classification_gpu( &self, n_samples: usize, n_features: usize, n_classes: usize, n_clusters_per_class: usize, n_informative: usize, random_state: Option<u64>, ) -> Result<Dataset>

Generate classification dataset on GPU

Examples found in repository?
examples/gpu_acceleration.rs (line 178)
138fn demonstrate_backend_comparison() -> Result<(), Box<dyn std::error::Error>> {
139    println!("⚡ GPU BACKEND COMPARISON");
140    println!("{}", "-".repeat(40));
141
142    let testsize = 50_000;
143    let features = 20;
144
145    println!("Comparing backends for {testsize} samples with {features} features:");
146
147    // Test different backends
148    let backends = vec![
149        ("CPU Fallback", GpuBackend::Cpu),
150        ("CUDA", GpuBackend::Cuda { device_id: 0 }),
151        (
152            "OpenCL",
153            GpuBackend::OpenCl {
154                platform_id: 0,
155                device_id: 0,
156            },
157        ),
158    ];
159
160    let mut results: HashMap<String, std::time::Duration> = HashMap::new();
161
162    for (name, backend) in backends {
163        println!("\nTesting {name}:");
164
165        let config = GpuConfig {
166            backend: backend.clone(),
167            threads_per_block: 256,
168            enable_double_precision: true,
169            ..Default::default()
170        };
171
172        match GpuContext::new(config) {
173            Ok(context) => {
174                if context.is_available() {
175                    // Test classification generation
176                    let start = Instant::now();
177                    let dataset =
178                        context.make_classification_gpu(testsize, features, 5, 2, 15, Some(42))?;
179                    let duration = start.elapsed();
180
181                    results.insert(name.to_string(), duration);
182
183                    println!(
184                        "  ✅ Classification: {} samples in {:.2}ms",
185                        dataset.n_samples(),
186                        duration.as_millis()
187                    );
188                    println!(
189                        "  📊 Throughput: {:.1} samples/s",
190                        dataset.n_samples() as f64 / duration.as_secs_f64()
191                    );
192                } else {
193                    println!("  ❌ Backend not available");
194                }
195            }
196            Err(e) => {
197                println!("  ❌ Error: {e}");
198            }
199        }
200    }
201
202    // Calculate speedups
203    if let Some(cpu_time) = results.get("CPU Fallback") {
204        println!("\nSpeedup Analysis:");
205        for (backend, gpu_time) in &results {
206            if backend != "CPU Fallback" {
207                let speedup = cpu_time.as_secs_f64() / gpu_time.as_secs_f64();
208                println!("  {backend}: {speedup:.1}x faster than CPU");
209            }
210        }
211    }
212
213    println!();
214    Ok(())
215}
Source

pub fn make_regression_gpu( &self, n_samples: usize, n_features: usize, n_informative: usize, noise: f64, random_state: Option<u64>, ) -> Result<Dataset>

Generate regression dataset on GPU

Examples found in repository?
examples/gpu_acceleration.rs (line 325)
277fn demonstrate_memory_management() -> Result<(), Box<dyn std::error::Error>> {
278    println!("💾 GPU MEMORY MANAGEMENT");
279    println!("{}", "-".repeat(40));
280
281    // Configure memory-constrained GPU context
282    let memory_config = GpuMemoryConfig {
283        max_memory_mb: Some(512),  // Limit to 512MB
284        pool_size_mb: 256,         // 256MB pool
285        enable_coalescing: true,   // Enable memory coalescing
286        use_unified_memory: false, // Don't use unified memory
287    };
288
289    let gpu_config = GpuConfig {
290        backend: get_optimal_gpu_config().backend,
291        memory: memory_config,
292        threads_per_block: 256,
293        ..Default::default()
294    };
295
296    println!("Memory Configuration:");
297    println!(
298        "  Max Memory: {} MB",
299        gpu_config.memory.max_memory_mb.unwrap_or(0)
300    );
301    println!("  Pool Size: {} MB", gpu_config.memory.pool_size_mb);
302    println!("  Coalescing: {}", gpu_config.memory.enable_coalescing);
303    println!("  Unified Memory: {}", gpu_config.memory.use_unified_memory);
304
305    let context = GpuContext::new(gpu_config)?;
306    let device_info = context.device_info();
307
308    println!("\nDevice Memory Info:");
309    println!("  Total: {} MB", device_info.total_memory_mb);
310    println!("  Available: {} MB", device_info.available_memory_mb);
311    println!(
312        "  Utilization: {:.1}%",
313        (device_info.total_memory_mb - device_info.available_memory_mb) as f64
314            / device_info.total_memory_mb as f64
315            * 100.0
316    );
317
318    // Test memory-efficient generation
319    println!("\nTesting memory-efficient dataset generation...");
320
321    let sizes = vec![10_000, 25_000, 50_000];
322    for &size in &sizes {
323        let start = Instant::now();
324
325        match context.make_regression_gpu(size, 50, 30, 0.1, Some(42)) {
326            Ok(dataset) => {
327                let duration = start.elapsed();
328                let memory_estimate = dataset.n_samples() * dataset.n_features() * 8; // 8 bytes per f64
329
330                println!(
331                    "  {} samples: {:.1}ms (~{:.1} MB)",
332                    size,
333                    duration.as_millis(),
334                    memory_estimate as f64 / (1024.0 * 1024.0)
335                );
336            }
337            Err(e) => {
338                println!("  {size} samples: Failed - {e}");
339            }
340        }
341    }
342
343    println!();
344    Ok(())
345}
Source

pub fn make_blobs_gpu( &self, n_samples: usize, n_features: usize, n_centers: usize, cluster_std: f64, random_state: Option<u64>, ) -> Result<Dataset>

Generate clustering dataset (blobs) on GPU

Source

pub fn gpu_matrix_multiply( &self, a: &Array2<f64>, b: &Array2<f64>, ) -> Result<Array2<f64>>

Perform matrix operations on GPU

Source

pub fn gpu_elementwise_op<F>( &self, data: &Array2<f64>, op: F, ) -> Result<Array2<f64>>
where F: Fn(f64) -> f64 + Send + Sync,

Apply element-wise operations on GPU

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V