pub struct AdvancedGpuOptimizer { /* private fields */ }Expand description
Advanced-advanced GPU performance optimizer
Implementations§
Source§impl AdvancedGpuOptimizer
impl AdvancedGpuOptimizer
Sourcepub fn new() -> Self
pub fn new() -> Self
Create a new advanced GPU optimizer
Examples found in repository?
examples/advanced_showcase.rs (line 144)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Sourcepub fn with_adaptive_kernels(self, enabled: bool) -> Self
pub fn with_adaptive_kernels(self, enabled: bool) -> Self
Configure adaptive kernel selection
Examples found in repository?
examples/advanced_showcase.rs (line 145)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Sourcepub fn with_memory_prefetch(self, enabled: bool) -> Self
pub fn with_memory_prefetch(self, enabled: bool) -> Self
Configure memory prefetching
Examples found in repository?
examples/advanced_showcase.rs (line 146)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Sourcepub fn with_multi_gpu(self, enabled: bool) -> Self
pub fn with_multi_gpu(self, enabled: bool) -> Self
Configure multi-GPU coordination
Examples found in repository?
examples/advanced_showcase.rs (line 147)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Sourcepub fn with_auto_tuning(self, enabled: bool) -> Self
pub fn with_auto_tuning(self, enabled: bool) -> Self
Configure auto-tuning
Examples found in repository?
examples/advanced_showcase.rs (line 148)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Sourcepub fn optimize_execution(
&self,
gpu_context: &GpuContext,
operation: &str,
datashape: (usize, usize),
) -> Result<AdvancedKernelConfig>
pub fn optimize_execution( &self, gpu_context: &GpuContext, operation: &str, datashape: (usize, usize), ) -> Result<AdvancedKernelConfig>
Optimize GPU execution for a specific operation
Sourcepub fn generate_advanced_optimized_matrix(
&self,
gpu_context: &GpuContext,
rows: usize,
cols: usize,
distribution: &str,
) -> Result<Array2<f64>>
pub fn generate_advanced_optimized_matrix( &self, gpu_context: &GpuContext, rows: usize, cols: usize, distribution: &str, ) -> Result<Array2<f64>>
Advanced-optimized matrix generation on GPU
Examples found in repository?
examples/advanced_showcase.rs (lines 153-158)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Sourcepub fn benchmark_performance(
&self,
gpu_context: &GpuContext,
operation: &str,
datashapes: &[(usize, usize)],
) -> Result<PerformanceBenchmarkResults>
pub fn benchmark_performance( &self, gpu_context: &GpuContext, operation: &str, datashapes: &[(usize, usize)], ) -> Result<PerformanceBenchmarkResults>
Benchmark GPU vs CPU performance
Examples found in repository?
examples/advanced_showcase.rs (line 178)
130fn demonstrate_advanced_gpu_optimization() -> Result<(), Box<dyn std::error::Error>> {
131 println!("\n⚡ Advanced-GPU Optimization Demonstration");
132 println!("=====================================");
133
134 // Create GPU context (falls back to CPU if no GPU available)
135 println!("🔧 Initializing GPU context...");
136 let gpu_config = GpuConfig {
137 backend: GpuBackend::Cpu,
138 ..Default::default()
139 };
140 let gpu_context = GpuContext::new(gpu_config)?; // Using CPU backend for demo
141 println!(" Backend: {:?}", gpu_context.backend());
142
143 // Create advanced-GPU optimizer
144 let optimizer = AdvancedGpuOptimizer::new()
145 .with_adaptive_kernels(true)
146 .with_memory_prefetch(true)
147 .with_multi_gpu(false) // Single GPU for demo
148 .with_auto_tuning(true);
149
150 // Generate advanced-optimized matrix
151 println!("🔥 Generating advanced-optimized matrix...");
152 let start_time = Instant::now();
153 let matrix = optimizer.generate_advanced_optimized_matrix(
154 &gpu_context,
155 500, // rows
156 200, // cols
157 "normal", // distribution
158 )?;
159 let generation_time = start_time.elapsed();
160
161 println!(
162 " Generated {}x{} matrix in: {:?}",
163 matrix.nrows(),
164 matrix.ncols(),
165 generation_time
166 );
167 let matrix_mean = matrix.clone().mean();
168 let matrix_std = matrix.var(1.0).sqrt();
169 println!(
170 " Matrix stats: mean={:.3}, std={:.3}",
171 matrix_mean, matrix_std
172 );
173
174 // Benchmark performance
175 println!("📊 Running performance benchmarks...");
176 let datashapes = vec![(100, 50), (500, 200), (1000, 500)];
177 let benchmark_results =
178 optimizer.benchmark_performance(&gpu_context, "matrix_generation", &datashapes)?;
179
180 println!(" Benchmark Results:");
181 println!(
182 " Best Speedup: {:.2}x",
183 benchmark_results.best_speedup()
184 );
185 println!(
186 " Average Speedup: {:.2}x",
187 benchmark_results.average_speedup()
188 );
189 println!(
190 " Total Memory Usage: {:.1} MB",
191 benchmark_results.total_memory_usage()
192 );
193
194 Ok(())
195}Source§impl AdvancedGpuOptimizer
Enhanced AdvancedGpuOptimizer with AI and real-time monitoring
impl AdvancedGpuOptimizer
Enhanced AdvancedGpuOptimizer with AI and real-time monitoring
Sourcepub fn with_ai_monitoring() -> Self
pub fn with_ai_monitoring() -> Self
Create optimizer with AI-driven optimization and real-time monitoring
Sourcepub fn predict_optimal_config(
&self,
operation: &str,
datashape: (usize, usize),
historical_data: &[PerformanceDataPoint],
) -> Result<AdvancedKernelConfig>
pub fn predict_optimal_config( &self, operation: &str, datashape: (usize, usize), historical_data: &[PerformanceDataPoint], ) -> Result<AdvancedKernelConfig>
Predict optimal configuration using AI
Trait Implementations§
Source§impl Clone for AdvancedGpuOptimizer
impl Clone for AdvancedGpuOptimizer
Source§fn clone(&self) -> AdvancedGpuOptimizer
fn clone(&self) -> AdvancedGpuOptimizer
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl Debug for AdvancedGpuOptimizer
impl Debug for AdvancedGpuOptimizer
Auto Trait Implementations§
impl Freeze for AdvancedGpuOptimizer
impl RefUnwindSafe for AdvancedGpuOptimizer
impl Send for AdvancedGpuOptimizer
impl Sync for AdvancedGpuOptimizer
impl Unpin for AdvancedGpuOptimizer
impl UnwindSafe for AdvancedGpuOptimizer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.