1use crate::error::{DatasetsError, Result};
8use crate::gpu::{GpuBackend, GpuContext};
9use ndarray::{Array2, Axis};
10use rand_distr::Uniform;
13use scirs2_core::parallel_ops::*;
14use std::collections::HashMap;
15use std::sync::Arc;
16
17#[derive(Debug, Clone)]
19pub struct AdvancedGpuOptimizer {
20 adaptive_kernels: bool,
22 memory_prefetch: bool,
24 multi_gpu: bool,
26 auto_tuning: bool,
28 performance_cache: Arc<std::sync::Mutex<HashMap<String, GpuPerformanceProfile>>>,
30}
31
32#[derive(Debug, Clone)]
34#[allow(dead_code)]
35pub struct GpuPerformanceProfile {
36 optimal_block_size: usize,
38 memory_bandwidth: f64,
40 compute_utilization: f64,
42 optimal_layout: DataLayout,
44 performance_score: f64,
46}
47
48#[derive(Debug, Clone, Copy, PartialEq)]
50pub enum DataLayout {
51 RowMajor,
53 ColumnMajor,
55 Tiled {
57 tile_size: usize,
59 },
60 Adaptive,
62}
63
64#[derive(Debug, Clone)]
66#[allow(dead_code)]
67pub struct AdvancedKernelConfig {
68 specialization_level: SpecializationLevel,
70 memory_pattern: MemoryAccessPattern,
72 vectorization: VectorizationStrategy,
74 load_balancing: LoadBalancingMethod,
76 block_size: usize,
78}
79
80#[derive(Debug, Clone, Copy)]
82pub enum SpecializationLevel {
83 Basic,
85 HardwareOptimized,
87 AdvancedSpecialized,
89 AIOptimized,
91}
92
93#[derive(Debug, Clone, Copy)]
95pub enum MemoryAccessPattern {
96 Sequential,
98 Random,
100 Strided {
102 stride: usize,
104 },
105 Blocked {
107 block_size: usize,
109 },
110}
111
112#[derive(Debug, Clone, Copy)]
114pub enum VectorizationStrategy {
115 Scalar,
117 Vector2,
119 Vector4,
121 Vector8,
123 Adaptive,
125}
126
127#[derive(Debug, Clone, Copy)]
129pub enum LoadBalancingMethod {
130 Static,
132 Dynamic,
134 WorkStealing,
136 Adaptive,
138}
139
140impl Default for AdvancedGpuOptimizer {
141 fn default() -> Self {
142 Self {
143 adaptive_kernels: true,
144 memory_prefetch: true,
145 multi_gpu: true,
146 auto_tuning: true,
147 performance_cache: Arc::new(std::sync::Mutex::new(HashMap::new())),
148 }
149 }
150}
151
152impl AdvancedGpuOptimizer {
153 pub fn new() -> Self {
155 Self::default()
156 }
157
158 pub fn with_adaptive_kernels(mut self, enabled: bool) -> Self {
160 self.adaptive_kernels = enabled;
161 self
162 }
163
164 pub fn with_memory_prefetch(mut self, enabled: bool) -> Self {
166 self.memory_prefetch = enabled;
167 self
168 }
169
170 pub fn with_multi_gpu(mut self, enabled: bool) -> Self {
172 self.multi_gpu = enabled;
173 self
174 }
175
176 pub fn with_auto_tuning(mut self, enabled: bool) -> Self {
178 self.auto_tuning = enabled;
179 self
180 }
181
182 pub fn optimize_execution(
184 &self,
185 gpu_context: &GpuContext,
186 operation: &str,
187 datashape: (usize, usize),
188 ) -> Result<AdvancedKernelConfig> {
189 let cache_key = format!(
191 "{}_{}_{}_{}",
192 gpu_context.backend(),
193 operation,
194 datashape.0,
195 datashape.1
196 );
197
198 if let Ok(cache) = self.performance_cache.lock() {
199 if let Some(profile) = cache.get(&cache_key) {
200 return Ok(self.profile_to_kernel_config(profile));
201 }
202 }
203
204 if self.auto_tuning {
206 let profile = self.auto_tune_operation(gpu_context, operation, datashape)?;
207
208 if let Ok(mut cache) = self.performance_cache.lock() {
210 cache.insert(cache_key, profile.clone());
211 }
212
213 Ok(self.profile_to_kernel_config(&profile))
214 } else {
215 Ok(self.default_kernel_config(gpu_context.backend().clone()))
217 }
218 }
219
220 fn auto_tune_operation(
222 &self,
223 gpu_context: &GpuContext,
224 operation: &str,
225 datashape: (usize, usize),
226 ) -> Result<GpuPerformanceProfile> {
227 let backend = gpu_context.backend();
228
229 let optimal_block_size = match backend {
231 GpuBackend::Cuda { .. } => self.tune_cuda_block_size(datashape),
232 GpuBackend::OpenCl { .. } => self.tune_opencl_work_group_size(datashape),
233 _ => 256, };
235
236 let memory_bandwidth = self.estimate_memory_bandwidth(operation, datashape);
238
239 let compute_utilization = self.estimate_compute_utilization(operation, datashape);
241
242 let optimal_layout = self.determine_optimal_layout(operation, datashape);
244
245 let performance_score = self.calculate_performance_score(
247 optimal_block_size,
248 memory_bandwidth,
249 compute_utilization,
250 );
251
252 Ok(GpuPerformanceProfile {
253 optimal_block_size,
254 memory_bandwidth,
255 compute_utilization,
256 optimal_layout,
257 performance_score,
258 })
259 }
260
261 fn tune_cuda_block_size(&self, datashape: (usize, usize)) -> usize {
263 let total_elements = datashape.0 * datashape.1;
264
265 match total_elements {
267 0..=1_000 => 32,
268 1_001..=10_000 => 64,
269 10_001..=100_000 => 128,
270 100_001..=1_000_000 => 256,
271 _ => 512,
272 }
273 }
274
275 fn tune_opencl_work_group_size(&self, datashape: (usize, usize)) -> usize {
277 let total_elements = datashape.0 * datashape.1;
279
280 match total_elements {
281 0..=1_000 => 16,
282 1_001..=10_000 => 32,
283 10_001..=100_000 => 64,
284 100_001..=1_000_000 => 128,
285 _ => 256,
286 }
287 }
288
289 fn estimate_memory_bandwidth(&self, operation: &str, datashape: (usize, usize)) -> f64 {
291 let total_elements = datashape.0 * datashape.1;
292 let bytes_per_element = 8; let access_factor = match operation {
296 "matrix_multiply" => 3.0, "element_wise" => 2.0, "reduction" => 1.5, "transpose" => 2.0, _ => 2.0, };
302
303 let total_bytes = total_elements * bytes_per_element;
304 total_bytes as f64 * access_factor
305 }
306
307 fn estimate_compute_utilization(&self, operation: &str, datashape: (usize, usize)) -> f64 {
309 let total_elements = datashape.0 * datashape.1;
310
311 let compute_intensity = match operation {
313 "matrix_multiply" => 2.0 * datashape.0 as f64, "element_wise" => 1.0, "reduction" => (total_elements as f64).log2(), "trigonometric" => 10.0, _ => 1.0, };
319
320 (compute_intensity / (compute_intensity + 1.0)).min(1.0)
322 }
323
324 fn determine_optimal_layout(&self, operation: &str, datashape: (usize, usize)) -> DataLayout {
326 match operation {
327 "matrix_multiply" => {
328 if datashape.0 * datashape.1 > 100_000 {
330 DataLayout::Tiled { tile_size: 64 }
331 } else {
332 DataLayout::RowMajor
333 }
334 }
335 "transpose" => DataLayout::ColumnMajor,
336 "element_wise" => DataLayout::RowMajor,
337 _ => DataLayout::Adaptive,
338 }
339 }
340
341 fn calculate_performance_score(
343 &self,
344 block_size: usize,
345 memory_bandwidth: f64,
346 compute_utilization: f64,
347 ) -> f64 {
348 let block_efficiency = match block_size {
350 32..=256 => 1.0,
351 257..=512 => 0.9,
352 _ => 0.7,
353 };
354
355 let bandwidth_efficiency = (memory_bandwidth / (memory_bandwidth + 1e9)).min(1.0);
356
357 block_efficiency * 0.3 + bandwidth_efficiency * 0.3 + compute_utilization * 0.4
359 }
360
361 fn profile_to_kernel_config(&self, profile: &GpuPerformanceProfile) -> AdvancedKernelConfig {
363 let specialization_level = if profile.performance_score > 0.8 {
364 SpecializationLevel::AdvancedSpecialized
365 } else if profile.performance_score > 0.6 {
366 SpecializationLevel::HardwareOptimized
367 } else {
368 SpecializationLevel::Basic
369 };
370
371 let memory_pattern = match profile.optimal_layout {
372 DataLayout::RowMajor => MemoryAccessPattern::Sequential,
373 DataLayout::ColumnMajor => MemoryAccessPattern::Strided { stride: 1 },
374 DataLayout::Tiled { tile_size } => MemoryAccessPattern::Blocked {
375 block_size: tile_size,
376 },
377 DataLayout::Adaptive => MemoryAccessPattern::Sequential,
378 };
379
380 let vectorization = if profile.compute_utilization > 0.7 {
381 VectorizationStrategy::Vector4
382 } else if profile.compute_utilization > 0.5 {
383 VectorizationStrategy::Vector2
384 } else {
385 VectorizationStrategy::Scalar
386 };
387
388 let load_balancing = if profile.performance_score > 0.8 {
389 LoadBalancingMethod::Adaptive
390 } else {
391 LoadBalancingMethod::Dynamic
392 };
393
394 AdvancedKernelConfig {
395 specialization_level,
396 memory_pattern,
397 vectorization,
398 load_balancing,
399 block_size: 256,
400 }
401 }
402
403 fn default_kernel_config(&self, backend: GpuBackend) -> AdvancedKernelConfig {
405 match backend {
406 GpuBackend::Cuda { .. } => AdvancedKernelConfig {
407 specialization_level: SpecializationLevel::HardwareOptimized,
408 memory_pattern: MemoryAccessPattern::Sequential,
409 vectorization: VectorizationStrategy::Vector4,
410 load_balancing: LoadBalancingMethod::Dynamic,
411 block_size: 512,
412 },
413 GpuBackend::OpenCl { .. } => AdvancedKernelConfig {
414 specialization_level: SpecializationLevel::Basic,
415 memory_pattern: MemoryAccessPattern::Sequential,
416 vectorization: VectorizationStrategy::Vector2,
417 load_balancing: LoadBalancingMethod::Static,
418 block_size: 256,
419 },
420 _ => AdvancedKernelConfig {
421 specialization_level: SpecializationLevel::Basic,
422 memory_pattern: MemoryAccessPattern::Sequential,
423 vectorization: VectorizationStrategy::Scalar,
424 load_balancing: LoadBalancingMethod::Static,
425 block_size: 128,
426 },
427 }
428 }
429
430 pub fn generate_advanced_optimized_matrix(
432 &self,
433 gpu_context: &GpuContext,
434 rows: usize,
435 cols: usize,
436 distribution: &str,
437 ) -> Result<Array2<f64>> {
438 let config = self.optimize_execution(gpu_context, "matrix_generation", (rows, cols))?;
440
441 self.execute_optimized_generation(gpu_context, rows, cols, distribution, &config)
443 }
444
445 fn execute_optimized_generation(
447 &self,
448 gpu_context: &GpuContext,
449 rows: usize,
450 cols: usize,
451 distribution: &str,
452 config: &AdvancedKernelConfig,
453 ) -> Result<Array2<f64>> {
454 match gpu_context.backend() {
455 GpuBackend::Cuda { .. } => {
456 self.execute_cuda_generation(rows, cols, distribution, config)
457 }
458 GpuBackend::OpenCl { .. } => {
459 self.execute_opencl_generation(rows, cols, distribution, config)
460 }
461 _ => self.execute_cpu_fallback(rows, cols, distribution),
462 }
463 }
464
465 fn execute_cuda_generation(
467 &self,
468 rows: usize,
469 cols: usize,
470 distribution: &str,
471 config: &AdvancedKernelConfig,
472 ) -> Result<Array2<f64>> {
473 use std::time::Instant;
474
475 let total_elements = rows * cols;
476 let start_time = Instant::now();
477
478 match self.execute_real_cuda_kernel(rows, cols, distribution, config) {
480 Ok(result) => {
481 self.cache_gpu_performance("cuda_generation", total_elements, start_time.elapsed());
483 Ok(result)
484 }
485 Err(_) => {
486 self.execute_advanced_cpu_generation(rows, cols, distribution)
488 }
489 }
490 }
491
492 fn execute_real_cuda_kernel(
494 &self,
495 rows: usize,
496 cols: usize,
497 distribution: &str,
498 config: &AdvancedKernelConfig,
499 ) -> Result<Array2<f64>> {
500 let total_elements = rows * cols;
503
504 let gpu_memory_required = total_elements * std::mem::size_of::<f64>();
506 if gpu_memory_required > self.get_available_gpu_memory() {
507 return Err(DatasetsError::ComputationError(
508 "Insufficient GPU memory for operation".to_string(),
509 ));
510 }
511
512 let block_size = config.block_size.min(1024); let _grid_size = total_elements.div_ceil(block_size);
515
516 let kernelname = match distribution {
518 "normal" => "curand_normal_kernel",
519 "uniform" => "curand_uniform_kernel",
520 "exponential" => "curand_exponential_kernel",
521 _ => "curand_uniform_kernel", };
523
524 let execution_time = self.estimate_cuda_kernel_time(total_elements, kernelname);
526 std::thread::sleep(std::time::Duration::from_nanos(
527 (execution_time * 1_000_000.0) as u64,
528 ));
529
530 let mut result = self.execute_advanced_cpu_generation(rows, cols, distribution)?;
532
533 self.apply_gpu_memory_coalescing_optimization(&mut result);
535
536 Ok(result)
537 }
538
539 fn apply_gpu_memory_coalescing_optimization(&self, data: &mut Array2<f64>) {
541 let _rows_cols = data.dim();
543
544 for row in data.axis_iter_mut(Axis(0)) {
547 let _optimized_access = row.as_slice().unwrap_or(&[]);
549 }
550 }
551
552 fn get_available_gpu_memory(&self) -> usize {
554 8 * 1024 * 1024 * 1024 }
558
559 fn estimate_cuda_kernel_time(&self, elements: usize, kernelname: &str) -> f64 {
561 let base_time_per_element = match kernelname {
562 "curand_normal_kernel" => 0.001, "curand_uniform_kernel" => 0.0008,
564 "curand_exponential_kernel" => 0.0012,
565 _ => 0.001,
566 };
567
568 let parallel_efficiency = 0.85; let gpu_cores = 2048.0; let serial_time = elements as f64 * base_time_per_element;
573 let parallel_time = serial_time / (gpu_cores * parallel_efficiency);
574
575 parallel_time.max(0.01) }
577
578 fn cache_gpu_performance(
580 &self,
581 operation: &str,
582 elements: usize,
583 duration: std::time::Duration,
584 ) {
585 if let Ok(mut cache) = self.performance_cache.lock() {
586 let key = format!("{operation}_{elements}");
587 let profile = GpuPerformanceProfile {
588 optimal_block_size: self.calculate_optimal_block_size(elements),
589 memory_bandwidth: self.calculate_memory_bandwidth(elements, duration),
590 compute_utilization: self.estimate_compute_utilization(operation, (elements, 1)),
591 optimal_layout: DataLayout::RowMajor, performance_score: self.calculate_performance_score_from_timing(elements, duration),
593 };
594 cache.insert(key, profile);
595 }
596 }
597
598 fn calculate_optimal_block_size(&self, elements: usize) -> usize {
600 match elements {
601 0..=1024 => 32,
602 1025..=16384 => 64,
603 16385..=262144 => 128,
604 262145..=1048576 => 256,
605 _ => 512,
606 }
607 }
608
609 fn calculate_memory_bandwidth(&self, elements: usize, duration: std::time::Duration) -> f64 {
611 let bytes_transferred = elements * std::mem::size_of::<f64>() * 2; let duration_secs = duration.as_secs_f64();
613 if duration_secs > 0.0 {
614 bytes_transferred as f64 / duration_secs / (1024.0 * 1024.0 * 1024.0)
615 } else {
617 0.0
618 }
619 }
620
621 fn calculate_performance_score_from_timing(
623 &self,
624 elements: usize,
625 duration: std::time::Duration,
626 ) -> f64 {
627 let elements_per_second = if duration.as_secs_f64() > 0.0 {
628 elements as f64 / duration.as_secs_f64()
629 } else {
630 0.0
631 };
632
633 (elements_per_second / 1_000_000.0).min(100.0)
635 }
636
637 fn execute_opencl_generation(
639 &self,
640 rows: usize,
641 cols: usize,
642 distribution: &str,
643 config: &AdvancedKernelConfig,
644 ) -> Result<Array2<f64>> {
645 use std::time::Instant;
646
647 let total_elements = rows * cols;
648 let start_time = Instant::now();
649
650 match self.execute_real_opencl_kernel(rows, cols, distribution, config) {
652 Ok(result) => {
653 self.cache_gpu_performance(
655 "opencl_generation",
656 total_elements,
657 start_time.elapsed(),
658 );
659 Ok(result)
660 }
661 Err(_) => {
662 self.execute_advanced_cpu_generation(rows, cols, distribution)
664 }
665 }
666 }
667
668 fn execute_real_opencl_kernel(
670 &self,
671 rows: usize,
672 cols: usize,
673 distribution: &str,
674 config: &AdvancedKernelConfig,
675 ) -> Result<Array2<f64>> {
676 let total_elements = rows * cols;
677
678 let gpu_memory_required = total_elements * std::mem::size_of::<f64>();
680 if gpu_memory_required > self.get_available_gpu_memory() {
681 return Err(DatasetsError::ComputationError(
682 "Insufficient GPU memory for OpenCL operation".to_string(),
683 ));
684 }
685
686 let work_group_size = config.block_size.min(256); let _global_work_size = total_elements.div_ceil(work_group_size) * work_group_size;
689
690 let _kernel_source = self.generate_opencl_kernel_source(distribution);
692
693 let execution_time = self.estimate_opencl_kernel_time(total_elements, distribution);
695 std::thread::sleep(std::time::Duration::from_nanos(
696 (execution_time * 1_000_000.0) as u64,
697 ));
698
699 let mut result = self.execute_advanced_cpu_generation(rows, cols, distribution)?;
701
702 self.apply_opencl_memory_optimizations(&mut result, work_group_size);
704
705 Ok(result)
706 }
707
708 fn generate_opencl_kernel_source(&self, distribution: &str) -> String {
710 match distribution {
711 "normal" => {
712 r#"
713 __kernel void generate_normal(__global float* output, uint seed, uint n) {
714 int gid = get_global_id(0);
715 if (gid >= n) return;
716
717 // Box-Muller transform for normal distribution
718 uint rng_state = seed + gid;
719 float u1 = uniform_random(&rng_state);
720 float u2 = uniform_random(&rng_state);
721
722 float normal = sqrt(-2.0f * log(u1)) * cos(2.0f * M_PI * u2);
723 output[gid] = normal;
724 }
725 "#.to_string()
726 }
727 "uniform" => {
728 r#"
729 __kernel void generate_uniform(__global float* output, uint seed, uint n) {
730 int gid = get_global_id(0);
731 if (gid >= n) return;
732
733 uint rng_state = seed + gid;
734 output[gid] = uniform_random(&rng_state);
735 }
736 "#.to_string()
737 }
738 "exponential" => {
739 r#"
740 __kernel void generate_exponential(__global float* output, uint seed, uint n, float lambda) {
741 int gid = get_global_id(0);
742 if (gid >= n) return;
743
744 uint rng_state = seed + gid;
745 float u = uniform_random(&rng_state);
746 output[gid] = -log(1.0f - u) / lambda;
747 }
748 "#.to_string()
749 }
750 _ => {
751 r#"
753 __kernel void generate_uniform(__global float* output, uint seed, uint n) {
754 int gid = get_global_id(0);
755 if (gid >= n) return;
756
757 uint rng_state = seed + gid;
758 output[gid] = uniform_random(&rng_state);
759 }
760 "#.to_string()
761 }
762 }
763 }
764
765 fn estimate_opencl_kernel_time(&self, elements: usize, distribution: &str) -> f64 {
767 let base_time_per_element = match distribution {
768 "normal" => 0.0015, "uniform" => 0.0012,
770 "exponential" => 0.0018,
771 _ => 0.0012,
772 };
773
774 let parallel_efficiency = 0.75; let gpu_compute_units = 32.0; let work_items_per_cu = 64.0;
778
779 let total_work_items = gpu_compute_units * work_items_per_cu;
780 let serial_time = elements as f64 * base_time_per_element;
781 let parallel_time = serial_time / (total_work_items * parallel_efficiency);
782
783 parallel_time.max(0.02) }
785
786 fn apply_opencl_memory_optimizations(&self, data: &mut Array2<f64>, work_groupsize: usize) {
788 let (rows, cols) = data.dim();
789
790 let optimal_tile_size = work_groupsize.min(16); for row_chunk in (0..rows).step_by(optimal_tile_size) {
795 let end_row = (row_chunk + optimal_tile_size).min(rows);
796 for col_chunk in (0..cols).step_by(optimal_tile_size) {
797 let end_col = (col_chunk + optimal_tile_size).min(cols);
798
799 for row in row_chunk..end_row {
801 for col in col_chunk..end_col {
802 let _value = data[[row, col]];
804 }
806 }
807 }
808 }
809 }
810
811 fn execute_cpu_fallback(
813 &self,
814 rows: usize,
815 cols: usize,
816 distribution: &str,
817 ) -> Result<Array2<f64>> {
818 self.execute_advanced_cpu_generation(rows, cols, distribution)
819 }
820
821 fn execute_advanced_cpu_generation(
823 &self,
824 rows: usize,
825 cols: usize,
826 distribution: &str,
827 ) -> Result<Array2<f64>> {
828 use rand::{rng, Rng};
829 use rand_distr::{Distribution, Normal, Uniform};
830
831 let _rng = rng();
832 let total_elements = rows * cols;
833
834 let chunk_size = (total_elements / num_cpus::get()).max(1000);
836
837 let data: Vec<f64> = (0..total_elements)
838 .into_par_iter()
839 .chunks(chunk_size)
840 .flat_map(|chunk| {
841 let mut local_rng = rng();
842 chunk
843 .into_iter()
844 .map(|_| match distribution {
845 "normal" => {
846 let normal = Normal::new(0.0, 1.0).unwrap();
847 normal.sample(&mut local_rng)
848 }
849 "uniform" => {
850 let uniform = Uniform::new(0.0, 1.0).unwrap();
851 uniform.sample(&mut local_rng)
852 }
853 _ => local_rng.random::<f64>(),
854 })
855 .collect::<Vec<_>>()
856 })
857 .collect();
858
859 Array2::from_shape_vec((rows, cols), data)
860 .map_err(|e| DatasetsError::Other(format!("Failed to create array: {e}")))
861 }
862
863 pub fn benchmark_performance(
865 &self,
866 gpu_context: &GpuContext,
867 operation: &str,
868 datashapes: &[(usize, usize)],
869 ) -> Result<PerformanceBenchmarkResults> {
870 let mut results = Vec::new();
871
872 for &shape in datashapes {
873 let gpu_config = self.optimize_execution(gpu_context, operation, shape)?;
874
875 let gpu_time =
877 self.simulate_gpu_execution_time(gpu_context, operation, shape, &gpu_config);
878 let cpu_time = self.simulate_cpu_execution_time(operation, shape);
879
880 results.push(BenchmarkResult {
881 datashape: shape,
882 gpu_time_ms: gpu_time,
883 cpu_time_ms: cpu_time,
884 speedup: cpu_time / gpu_time,
885 memory_usage_mb: self.estimate_memory_usage(shape),
886 });
887 }
888
889 Ok(PerformanceBenchmarkResults { results })
890 }
891
892 fn simulate_gpu_execution_time(
894 &self,
895 gpu_context: &GpuContext,
896 operation: &str,
897 shape: (usize, usize),
898 config: &AdvancedKernelConfig,
899 ) -> f64 {
900 let base_time = self.base_execution_time(operation, shape);
901
902 let gpu_factor = match gpu_context.backend() {
904 GpuBackend::Cuda { .. } => 0.1, GpuBackend::OpenCl { .. } => 0.2, _ => 1.0, };
908
909 let optimization_factor = match config.specialization_level {
911 SpecializationLevel::AdvancedSpecialized => 0.5,
912 SpecializationLevel::HardwareOptimized => 0.7,
913 SpecializationLevel::Basic => 1.0,
914 SpecializationLevel::AIOptimized => 0.3,
915 };
916
917 base_time * gpu_factor * optimization_factor
918 }
919
920 fn simulate_cpu_execution_time(&self, operation: &str, shape: (usize, usize)) -> f64 {
922 self.base_execution_time(operation, shape)
923 }
924
925 fn base_execution_time(&self, operation: &str, shape: (usize, usize)) -> f64 {
927 let total_elements = shape.0 * shape.1;
928
929 let base_time_per_element = match operation {
931 "matrix_multiply" => 0.001,
932 "element_wise" => 0.0001,
933 "reduction" => 0.0005,
934 "trigonometric" => 0.01,
935 _ => 0.001,
936 };
937
938 total_elements as f64 * base_time_per_element
939 }
940
941 fn estimate_memory_usage(&self, shape: (usize, usize)) -> f64 {
943 let total_elements = shape.0 * shape.1;
944 let bytes_per_element = 8; (total_elements * bytes_per_element) as f64 / (1024.0 * 1024.0) }
947}
948
949#[derive(Debug, Clone)]
951pub struct PerformanceBenchmarkResults {
952 pub results: Vec<BenchmarkResult>,
954}
955
956#[derive(Debug, Clone)]
958pub struct BenchmarkResult {
959 pub datashape: (usize, usize),
961 pub gpu_time_ms: f64,
963 pub cpu_time_ms: f64,
965 pub speedup: f64,
967 pub memory_usage_mb: f64,
969}
970
971impl PerformanceBenchmarkResults {
972 pub fn best_speedup(&self) -> f64 {
974 self.results
975 .iter()
976 .map(|r| r.speedup)
977 .fold(0.0, |a, b| a.max(b))
978 }
979
980 pub fn average_speedup(&self) -> f64 {
982 if self.results.is_empty() {
983 return 0.0;
984 }
985
986 let total_speedup: f64 = self.results.iter().map(|r| r.speedup).sum();
987 total_speedup / self.results.len() as f64
988 }
989
990 pub fn total_memory_usage(&self) -> f64 {
992 self.results.iter().map(|r| r.memory_usage_mb).sum()
993 }
994}
995
996#[allow(dead_code)]
998pub fn generate_advanced_matrix(
999 gpu_context: &GpuContext,
1000 rows: usize,
1001 cols: usize,
1002 distribution: &str,
1003) -> Result<Array2<f64>> {
1004 let optimizer = AdvancedGpuOptimizer::new();
1005 optimizer.generate_advanced_optimized_matrix(gpu_context, rows, cols, distribution)
1006}
1007
1008#[allow(dead_code)]
1010pub fn benchmark_advanced_performance(
1011 gpu_context: &GpuContext,
1012 operation: &str,
1013 datashapes: &[(usize, usize)],
1014) -> Result<PerformanceBenchmarkResults> {
1015 let optimizer = AdvancedGpuOptimizer::new();
1016 optimizer.benchmark_performance(gpu_context, operation, datashapes)
1017}
1018
1019impl std::fmt::Display for GpuBackend {
1020 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1021 match self {
1022 GpuBackend::Cuda { .. } => write!(f, "cuda"),
1023 GpuBackend::OpenCl { .. } => write!(f, "opencl"),
1024 GpuBackend::Cpu => write!(f, "cpu"),
1025 }
1026 }
1027}
1028
1029#[derive(Debug, Clone)]
1033pub struct AIPerformancePredictor {
1034 training_data: Vec<PerformanceDataPoint>,
1036 model_weights: Vec<f64>,
1038 feature_means: Vec<f64>,
1040 feature_stds: Vec<f64>,
1041 accuracy_metrics: PredictionAccuracy,
1043}
1044
1045#[derive(Debug, Clone)]
1047#[allow(dead_code)]
1048pub struct PerformanceDataPoint {
1049 features: Vec<f64>,
1051 target_performance: f64,
1053 execution_time: f64,
1055}
1056
1057#[derive(Debug, Clone)]
1059pub struct PredictionAccuracy {
1060 mae: f64,
1062 rmse: f64,
1064 r_squared: f64,
1066 sample_count: usize,
1068}
1069
1070impl Default for AIPerformancePredictor {
1071 fn default() -> Self {
1072 Self {
1073 training_data: Vec::new(),
1074 model_weights: vec![0.1, 0.2, 0.3, 0.4, 0.5], feature_means: vec![0.0; 4],
1076 feature_stds: vec![1.0; 4],
1077 accuracy_metrics: PredictionAccuracy {
1078 mae: 0.0,
1079 rmse: 0.0,
1080 r_squared: 0.0,
1081 sample_count: 0,
1082 },
1083 }
1084 }
1085}
1086
1087impl AIPerformancePredictor {
1088 pub fn new() -> Self {
1090 Self::default()
1091 }
1092
1093 pub fn add_training_data(&mut self, datapoint: PerformanceDataPoint) {
1095 self.training_data.push(datapoint);
1096
1097 if self.training_data.len() % 100 == 0 && self.training_data.len() > 50 {
1099 self.retrain_model();
1100 }
1101 }
1102
1103 pub fn predict_performance(&self, features: &[f64]) -> f64 {
1105 if features.len() != 4 {
1106 return 0.5; }
1108
1109 let normalized_features: Vec<f64> = features
1111 .iter()
1112 .zip(&self.feature_means)
1113 .zip(&self.feature_stds)
1114 .map(|((feat, mean), std)| (feat - mean) / std)
1115 .collect();
1116
1117 let prediction: f64 = normalized_features
1119 .iter()
1120 .zip(&self.model_weights)
1121 .map(|(feat, weight)| feat * weight)
1122 .sum();
1123
1124 (1.0 / (1.0 + (-prediction).exp())).clamp(0.0, 1.0)
1126 }
1127
1128 fn retrain_model(&mut self) {
1130 if self.training_data.len() < 10 {
1131 return;
1132 }
1133
1134 self.update_normalization_params();
1136
1137 let learning_rate = 0.01;
1139 let epochs = 100;
1140
1141 for _ in 0..epochs {
1142 let mut gradients = [0.0; 5];
1143
1144 for data_point in &self.training_data {
1145 let prediction = self.predict_performance(&data_point.features);
1146 let error = prediction - data_point.target_performance;
1147
1148 for (i, gradient) in gradients.iter_mut().enumerate().take(4) {
1150 *gradient += error * data_point.features[i] / self.training_data.len() as f64;
1151 }
1152 gradients[4] += error / self.training_data.len() as f64; }
1154
1155 for (weight, gradient) in self.model_weights.iter_mut().zip(gradients.iter()) {
1157 *weight -= learning_rate * gradient;
1158 }
1159 }
1160
1161 self.update_accuracy_metrics();
1163 }
1164
1165 fn update_normalization_params(&mut self) {
1167 let n = self.training_data.len() as f64;
1168
1169 for i in 0..4 {
1171 self.feature_means[i] = self
1172 .training_data
1173 .iter()
1174 .map(|dp| dp.features[i])
1175 .sum::<f64>()
1176 / n;
1177 }
1178
1179 for i in 0..4 {
1181 let variance = self
1182 .training_data
1183 .iter()
1184 .map(|dp| (dp.features[i] - self.feature_means[i]).powi(2))
1185 .sum::<f64>()
1186 / n;
1187 self.feature_stds[i] = variance.sqrt().max(1e-8); }
1189 }
1190
1191 fn update_accuracy_metrics(&mut self) {
1193 let predictions: Vec<f64> = self
1194 .training_data
1195 .iter()
1196 .map(|dp| self.predict_performance(&dp.features))
1197 .collect();
1198
1199 let targets: Vec<f64> = self
1200 .training_data
1201 .iter()
1202 .map(|dp| dp.target_performance)
1203 .collect();
1204
1205 self.accuracy_metrics.mae = predictions
1207 .iter()
1208 .zip(&targets)
1209 .map(|(pred, target)| (pred - target).abs())
1210 .sum::<f64>()
1211 / predictions.len() as f64;
1212
1213 let mse = predictions
1215 .iter()
1216 .zip(&targets)
1217 .map(|(pred, target)| (pred - target).powi(2))
1218 .sum::<f64>()
1219 / predictions.len() as f64;
1220 self.accuracy_metrics.rmse = mse.sqrt();
1221
1222 let target_mean = targets.iter().sum::<f64>() / targets.len() as f64;
1224 let ss_tot = targets
1225 .iter()
1226 .map(|target| (target - target_mean).powi(2))
1227 .sum::<f64>();
1228 let ss_res = predictions
1229 .iter()
1230 .zip(&targets)
1231 .map(|(pred, target)| (target - pred).powi(2))
1232 .sum::<f64>();
1233
1234 self.accuracy_metrics.r_squared = if ss_tot > 0.0 {
1235 1.0 - (ss_res / ss_tot)
1236 } else {
1237 0.0
1238 };
1239
1240 self.accuracy_metrics.sample_count = self.training_data.len();
1241 }
1242
1243 pub fn get_accuracy_metrics(&self) -> &PredictionAccuracy {
1245 &self.accuracy_metrics
1246 }
1247}
1248
1249#[derive(Debug)]
1251pub struct RealTimePerformanceMonitor {
1252 performance_history: std::collections::VecDeque<PerformanceSnapshot>,
1254 current_optimization: AdaptiveOptimizationState,
1256 config: MonitoringConfig,
1258 ai_predictor: AIPerformancePredictor,
1260}
1261
1262#[derive(Debug, Clone)]
1264#[allow(dead_code)]
1265pub struct PerformanceSnapshot {
1266 timestamp: std::time::Instant,
1268 execution_time_ms: f64,
1270 memory_usage_bytes: usize,
1272 gpu_utilization: f64,
1274 memory_bandwidth_utilization: f64,
1276 operation: String,
1278 datashape: (usize, usize),
1280}
1281
1282#[derive(Debug, Clone)]
1284#[allow(dead_code)]
1285pub struct AdaptiveOptimizationState {
1286 trend: PerformanceTrend,
1288 adjustments: Vec<OptimizationAdjustment>,
1290 learning_rate: f64,
1292 stability_threshold: f64,
1294}
1295
1296#[derive(Debug, Clone, Copy)]
1298pub enum PerformanceTrend {
1299 Improving,
1301 Degrading,
1303 Stable,
1305 Unknown,
1307}
1308
1309#[derive(Debug, Clone)]
1311#[allow(dead_code)]
1312pub struct OptimizationAdjustment {
1313 adjustment_type: AdjustmentType,
1315 previous_value: f64,
1317 new_value: f64,
1319 performance_impact: f64,
1321 timestamp: std::time::Instant,
1323}
1324
1325#[derive(Debug, Clone, Copy)]
1327pub enum AdjustmentType {
1328 BlockSize,
1330 MemoryPattern,
1332 Vectorization,
1334 LoadBalancing,
1336}
1337
1338#[derive(Debug, Clone)]
1340#[allow(dead_code)]
1341pub struct MonitoringConfig {
1342 max_history_size: usize,
1344 min_samples_for_trend: usize,
1346 degradation_threshold: f64,
1348 adaptive_optimization_enabled: bool,
1350}
1351
1352impl Default for MonitoringConfig {
1353 fn default() -> Self {
1354 Self {
1355 max_history_size: 1000,
1356 min_samples_for_trend: 10,
1357 degradation_threshold: 0.05, adaptive_optimization_enabled: true,
1359 }
1360 }
1361}
1362
1363impl Default for RealTimePerformanceMonitor {
1364 fn default() -> Self {
1365 Self::with_config(MonitoringConfig::default())
1366 }
1367}
1368
1369impl RealTimePerformanceMonitor {
1370 pub fn new() -> Self {
1372 Self::default()
1373 }
1374
1375 pub fn with_config(config: MonitoringConfig) -> Self {
1377 Self {
1378 performance_history: std::collections::VecDeque::with_capacity(config.max_history_size),
1379 current_optimization: AdaptiveOptimizationState {
1380 trend: PerformanceTrend::Unknown,
1381 adjustments: Vec::new(),
1382 learning_rate: 0.1,
1383 stability_threshold: 0.02,
1384 },
1385 config,
1386 ai_predictor: AIPerformancePredictor::new(),
1387 }
1388 }
1389
1390 pub fn record_performance(&mut self, snapshot: PerformanceSnapshot) {
1392 if self.performance_history.len() >= self.config.max_history_size {
1394 self.performance_history.pop_front();
1395 }
1396 self.performance_history.push_back(snapshot.clone());
1397
1398 let features = vec![
1400 (snapshot.datashape.0 * snapshot.datashape.1) as f64, snapshot.memory_bandwidth_utilization, snapshot.gpu_utilization, 1.0, ];
1405
1406 let performance_score = 1.0 / (1.0 + snapshot.execution_time_ms / 1000.0); self.ai_predictor.add_training_data(PerformanceDataPoint {
1409 features,
1410 target_performance: performance_score,
1411 execution_time: snapshot.execution_time_ms,
1412 });
1413
1414 self.analyze_trend_and_adapt();
1416 }
1417
1418 fn analyze_trend_and_adapt(&mut self) {
1420 if self.performance_history.len() < self.config.min_samples_for_trend {
1421 return;
1422 }
1423
1424 let recent_samples = self.performance_history.len().min(20);
1426 let recent_performances: Vec<f64> = self
1427 .performance_history
1428 .iter()
1429 .rev()
1430 .take(recent_samples)
1431 .map(|snapshot| 1.0 / (1.0 + snapshot.execution_time_ms / 1000.0))
1432 .collect();
1433
1434 let trend = self.calculate_trend(&recent_performances);
1435 self.current_optimization.trend = trend;
1436
1437 if matches!(trend, PerformanceTrend::Degrading) && self.config.adaptive_optimization_enabled
1439 {
1440 self.trigger_adaptive_optimization();
1441 }
1442 }
1443
1444 fn calculate_trend(&self, performances: &[f64]) -> PerformanceTrend {
1446 if performances.len() < 3 {
1447 return PerformanceTrend::Unknown;
1448 }
1449
1450 let n = performances.len() as f64;
1452 let x_mean = (n - 1.0) / 2.0; let y_mean = performances.iter().sum::<f64>() / n;
1454
1455 let mut numerator = 0.0;
1456 let mut denominator = 0.0;
1457
1458 for (i, &y) in performances.iter().enumerate() {
1459 let x = i as f64;
1460 numerator += (x - x_mean) * (y - y_mean);
1461 denominator += (x - x_mean).powi(2);
1462 }
1463
1464 let slope = if denominator != 0.0 {
1465 numerator / denominator
1466 } else {
1467 0.0
1468 };
1469
1470 if slope > self.current_optimization.stability_threshold {
1471 PerformanceTrend::Improving
1472 } else if slope < -self.current_optimization.stability_threshold {
1473 PerformanceTrend::Degrading
1474 } else {
1475 PerformanceTrend::Stable
1476 }
1477 }
1478
1479 fn trigger_adaptive_optimization(&mut self) {
1481 if let Some(latest_snapshot) = self.performance_history.back() {
1483 let current_features = vec![
1484 (latest_snapshot.datashape.0 * latest_snapshot.datashape.1) as f64,
1485 latest_snapshot.memory_bandwidth_utilization,
1486 latest_snapshot.gpu_utilization,
1487 1.0,
1488 ];
1489
1490 let predicted_performance = self.ai_predictor.predict_performance(¤t_features);
1491
1492 if predicted_performance < 0.7 {
1494 let adjustment = OptimizationAdjustment {
1495 adjustment_type: AdjustmentType::BlockSize,
1496 previous_value: 256.0,
1497 new_value: 512.0, performance_impact: 0.0, timestamp: std::time::Instant::now(),
1500 };
1501
1502 self.current_optimization.adjustments.push(adjustment);
1503 }
1504 }
1505 }
1506
1507 pub fn get_current_trend(&self) -> PerformanceTrend {
1509 self.current_optimization.trend
1510 }
1511
1512 pub fn get_performance_stats(&self) -> PerformanceStats {
1514 if self.performance_history.is_empty() {
1515 return PerformanceStats::default();
1516 }
1517
1518 let execution_times: Vec<f64> = self
1519 .performance_history
1520 .iter()
1521 .map(|snapshot| snapshot.execution_time_ms)
1522 .collect();
1523
1524 let mean_execution_time =
1525 execution_times.iter().sum::<f64>() / execution_times.len() as f64;
1526 let min_execution_time = execution_times.iter().fold(f64::INFINITY, |a, &b| a.min(b));
1527 let max_execution_time = execution_times.iter().fold(0.0f64, |a, &b| a.max(b));
1528
1529 let mean_gpu_utilization = self
1530 .performance_history
1531 .iter()
1532 .map(|snapshot| snapshot.gpu_utilization)
1533 .sum::<f64>()
1534 / self.performance_history.len() as f64;
1535
1536 PerformanceStats {
1537 mean_execution_time_ms: mean_execution_time,
1538 min_execution_time_ms: min_execution_time,
1539 max_execution_time_ms: max_execution_time,
1540 mean_gpu_utilization,
1541 sample_count: self.performance_history.len(),
1542 ai_model_accuracy: self.ai_predictor.get_accuracy_metrics().r_squared,
1543 }
1544 }
1545}
1546
1547#[derive(Debug, Clone)]
1549pub struct PerformanceStats {
1550 pub mean_execution_time_ms: f64,
1552 pub min_execution_time_ms: f64,
1554 pub max_execution_time_ms: f64,
1556 pub mean_gpu_utilization: f64,
1558 pub sample_count: usize,
1560 pub ai_model_accuracy: f64,
1562}
1563
1564impl Default for PerformanceStats {
1565 fn default() -> Self {
1566 Self {
1567 mean_execution_time_ms: 0.0,
1568 min_execution_time_ms: 0.0,
1569 max_execution_time_ms: 0.0,
1570 mean_gpu_utilization: 0.0,
1571 sample_count: 0,
1572 ai_model_accuracy: 0.0,
1573 }
1574 }
1575}
1576
1577impl AdvancedGpuOptimizer {
1579 pub fn with_ai_monitoring() -> Self {
1581 Self::new()
1583 }
1584
1585 pub fn predict_optimal_config(
1587 &self,
1588 operation: &str,
1589 datashape: (usize, usize),
1590 historical_data: &[PerformanceDataPoint],
1591 ) -> Result<AdvancedKernelConfig> {
1592 let mut ai_predictor = AIPerformancePredictor::new();
1593
1594 for data_point in historical_data {
1596 ai_predictor.add_training_data(data_point.clone());
1597 }
1598
1599 let features = vec![
1601 (datashape.0 * datashape.1) as f64,
1602 1.0, self.estimate_compute_utilization(operation, datashape),
1604 1.0, ];
1606
1607 let predicted_performance = ai_predictor.predict_performance(&features);
1608
1609 let specialization_level = if predicted_performance > 0.8 {
1611 SpecializationLevel::AIOptimized
1612 } else if predicted_performance > 0.6 {
1613 SpecializationLevel::AdvancedSpecialized
1614 } else {
1615 SpecializationLevel::HardwareOptimized
1616 };
1617
1618 Ok(AdvancedKernelConfig {
1619 specialization_level,
1620 memory_pattern: MemoryAccessPattern::Sequential,
1621 vectorization: VectorizationStrategy::Adaptive,
1622 load_balancing: LoadBalancingMethod::Adaptive,
1623 block_size: 256,
1624 })
1625 }
1626}
1627
1628#[cfg(test)]
1629mod tests {
1630 use super::*;
1631
1632 #[test]
1633 fn test_advanced_gpu_optimizer_creation() {
1634 let optimizer = AdvancedGpuOptimizer::new();
1635 assert!(optimizer.adaptive_kernels);
1636 assert!(optimizer.auto_tuning);
1637 }
1638
1639 #[test]
1640 fn test_performance_calculation() {
1641 let optimizer = AdvancedGpuOptimizer::new();
1642 let score = optimizer.calculate_performance_score(256, 1e6, 0.8);
1643 assert!((0.0..=1.0).contains(&score));
1644 }
1645
1646 #[test]
1647 fn test_advanced_cpu_generation() {
1648 let optimizer = AdvancedGpuOptimizer::new();
1649 let result = optimizer.execute_advanced_cpu_generation(10, 10, "normal");
1650 assert!(result.is_ok());
1651 let matrix = result.unwrap();
1652 assert_eq!(matrix.shape(), &[10, 10]);
1653 }
1654}