DecisionTreeClassifier

Struct DecisionTreeClassifier 

Source
pub struct DecisionTreeClassifier<XT: Number, YT: WholeNumber> { /* private fields */ }
Expand description

Implementation of a decision tree classifier.

This struct represents a decision tree classifier, which is a supervised machine learning algorithm used for classification tasks. It can be used to build a decision tree from a dataset and make predictions on new data.

§Type Parameters

  • XT: The type of the features in the dataset.
  • YT: The type of the labels in the dataset.

§Examples

use rusty_ai::trees::classifier::DecisionTreeClassifier;
use rusty_ai::data::dataset::Dataset;
use nalgebra::{DMatrix, DVector};

// Create a new decision tree classifier
let mut tree = DecisionTreeClassifier::<f64, u8>::new();

// Set the minimum number of samples required to split an internal node
tree.set_min_samples_split(5).unwrap();

// Set the maximum depth of the tree
tree.set_max_depth(Some(10)).unwrap();



let x = DMatrix::from_row_slice(3, 2, &[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
let y = DVector::from_vec(vec![0, 1, 0]);
let dataset = Dataset::new(x, y);
tree.fit(&dataset).unwrap();

// Make predictions on new data points
let x_test = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
let predictions = tree.predict(&x_test);
assert!(predictions.is_ok());

Implementations§

Source§

impl<XT: Number, YT: WholeNumber> DecisionTreeClassifier<XT, YT>

Source

pub fn new() -> Self

Source

pub fn with_params( criterion: Option<String>, min_samples_split: Option<u16>, max_depth: Option<u16>, ) -> Result<Self, Box<dyn Error>>

Creates a new instance of the decision tree classifier with custom parameters.

§Arguments
  • criterion - The criterion used for splitting nodes. Default is “gini”.
  • min_samples_split - The minimum number of samples required to split an internal node. Default is 2.
  • max_depth - The maximum depth of the tree. Default is None (unlimited depth).
§Returns

A new instance of the decision tree classifier with the specified parameters.

§Errors

This method will return an error if the classifier is unknown, the minimum number of samples to split is less than 2, or if the maximum depth is less than 1.

Source

pub fn set_min_samples_split( &mut self, min_samples_split: u16, ) -> Result<(), Box<dyn Error>>

Sets the minimum number of samples required to split an internal node.

§Arguments
  • min_samples_split - The minimum number of samples required to split an internal node.
§Errors

This method will return an error if the minimum number of samples to split is less than 2.

Source

pub fn set_max_depth( &mut self, max_depth: Option<u16>, ) -> Result<(), Box<dyn Error>>

Sets the maximum depth of the tree.

§Arguments
  • max_depth - The maximum depth of the tree.
§Errors

This method will return an error if the maximum depth is less than 1.

Source

pub fn set_criterion(&mut self, criterion: String) -> Result<(), Box<dyn Error>>

Sets the criterion used for splitting nodes.

§Arguments
  • criterion - The criterion used for splitting nodes.
§Errors

This method will return an error if the criterion is not supported.

Source

pub fn max_depth(&self) -> Option<u16>

Returns the maximum depth of the tree.

Source

pub fn min_samples_split(&self) -> u16

Returns the minimum number of samples required to split an internal node.

Source

pub fn criterion(&self) -> &str

Returns the criterion used for splitting nodes.

Source

pub fn fit( &mut self, dataset: &Dataset<XT, YT>, ) -> Result<String, Box<dyn Error>>

Builds the decision tree from a dataset.

§Arguments
  • dataset - The dataset containing features and labels.
§Returns

A string indicating that the tree was built successfully.

§Errors

This method will return an error if the tree couldn’t be built.

Source

pub fn predict( &self, features: &DMatrix<XT>, ) -> Result<DVector<YT>, Box<dyn Error>>

Predicts the labels for new data.

§Arguments
  • features - The matrix of features for the new data.
§Returns

A vector containing the predicted labels for the new data.

§Errors

This method will return an error if the tree wasn’t built yet.

Trait Implementations§

Source§

impl<XT: Number, YT: WholeNumber> ClassificationMetrics<YT> for DecisionTreeClassifier<XT, YT>

Source§

fn confusion_matrix( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<DMatrix<usize>, Box<dyn Error>>

Computes the confusion matrix based on the true labels and predicted labels. Read more
Source§

fn accuracy( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<f64, Box<dyn Error>>

Computes the accuracy based on the true labels and predicted labels. Read more
Source§

fn precision( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<f64, Box<dyn Error>>

Computes the precision based on the true labels and predicted labels. Read more
Source§

fn recall( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<f64, Box<dyn Error>>

Computes the recall based on the true labels and predicted labels. Read more
Source§

fn f1_score( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<f64, Box<dyn Error>>

Computes the F1 score based on the true labels and predicted labels. Read more
Source§

impl<XT: Clone + Number, YT: Clone + WholeNumber> Clone for DecisionTreeClassifier<XT, YT>

Source§

fn clone(&self) -> DecisionTreeClassifier<XT, YT>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<XT: Debug + Number, YT: Debug + WholeNumber> Debug for DecisionTreeClassifier<XT, YT>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<XT: Number, YT: WholeNumber> Default for DecisionTreeClassifier<XT, YT>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more

Auto Trait Implementations§

§

impl<XT, YT> Freeze for DecisionTreeClassifier<XT, YT>

§

impl<XT, YT> RefUnwindSafe for DecisionTreeClassifier<XT, YT>

§

impl<XT, YT> Send for DecisionTreeClassifier<XT, YT>

§

impl<XT, YT> Sync for DecisionTreeClassifier<XT, YT>

§

impl<XT, YT> Unpin for DecisionTreeClassifier<XT, YT>
where XT: Unpin,

§

impl<XT, YT> UnwindSafe for DecisionTreeClassifier<XT, YT>
where XT: UnwindSafe, YT: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V