pub struct DecisionTreeClassifier<XT: Number, YT: WholeNumber> { /* private fields */ }Expand description
Implementation of a decision tree classifier.
This struct represents a decision tree classifier, which is a supervised machine learning algorithm used for classification tasks. It can be used to build a decision tree from a dataset and make predictions on new data.
§Type Parameters
XT: The type of the features in the dataset.YT: The type of the labels in the dataset.
§Examples
use rusty_ai::trees::classifier::DecisionTreeClassifier;
use rusty_ai::data::dataset::Dataset;
use nalgebra::{DMatrix, DVector};
// Create a new decision tree classifier
let mut tree = DecisionTreeClassifier::<f64, u8>::new();
// Set the minimum number of samples required to split an internal node
tree.set_min_samples_split(5).unwrap();
// Set the maximum depth of the tree
tree.set_max_depth(Some(10)).unwrap();
let x = DMatrix::from_row_slice(3, 2, &[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
let y = DVector::from_vec(vec![0, 1, 0]);
let dataset = Dataset::new(x, y);
tree.fit(&dataset).unwrap();
// Make predictions on new data points
let x_test = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
let predictions = tree.predict(&x_test);
assert!(predictions.is_ok());Implementations§
Source§impl<XT: Number, YT: WholeNumber> DecisionTreeClassifier<XT, YT>
impl<XT: Number, YT: WholeNumber> DecisionTreeClassifier<XT, YT>
pub fn new() -> Self
Sourcepub fn with_params(
criterion: Option<String>,
min_samples_split: Option<u16>,
max_depth: Option<u16>,
) -> Result<Self, Box<dyn Error>>
pub fn with_params( criterion: Option<String>, min_samples_split: Option<u16>, max_depth: Option<u16>, ) -> Result<Self, Box<dyn Error>>
Creates a new instance of the decision tree classifier with custom parameters.
§Arguments
criterion- The criterion used for splitting nodes. Default is “gini”.min_samples_split- The minimum number of samples required to split an internal node. Default is 2.max_depth- The maximum depth of the tree. Default is None (unlimited depth).
§Returns
A new instance of the decision tree classifier with the specified parameters.
§Errors
This method will return an error if the classifier is unknown, the minimum number of samples to split is less than 2, or if the maximum depth is less than 1.
Sourcepub fn set_min_samples_split(
&mut self,
min_samples_split: u16,
) -> Result<(), Box<dyn Error>>
pub fn set_min_samples_split( &mut self, min_samples_split: u16, ) -> Result<(), Box<dyn Error>>
Sourcepub fn min_samples_split(&self) -> u16
pub fn min_samples_split(&self) -> u16
Returns the minimum number of samples required to split an internal node.
Trait Implementations§
Source§impl<XT: Number, YT: WholeNumber> ClassificationMetrics<YT> for DecisionTreeClassifier<XT, YT>
impl<XT: Number, YT: WholeNumber> ClassificationMetrics<YT> for DecisionTreeClassifier<XT, YT>
Source§fn confusion_matrix(
&self,
y_true: &DVector<T>,
y_pred: &DVector<T>,
) -> Result<DMatrix<usize>, Box<dyn Error>>
fn confusion_matrix( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<DMatrix<usize>, Box<dyn Error>>
Computes the confusion matrix based on the true labels and predicted labels. Read more
Source§fn accuracy(
&self,
y_true: &DVector<T>,
y_pred: &DVector<T>,
) -> Result<f64, Box<dyn Error>>
fn accuracy( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<f64, Box<dyn Error>>
Computes the accuracy based on the true labels and predicted labels. Read more
Source§fn precision(
&self,
y_true: &DVector<T>,
y_pred: &DVector<T>,
) -> Result<f64, Box<dyn Error>>
fn precision( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<f64, Box<dyn Error>>
Computes the precision based on the true labels and predicted labels. Read more
Source§impl<XT: Clone + Number, YT: Clone + WholeNumber> Clone for DecisionTreeClassifier<XT, YT>
impl<XT: Clone + Number, YT: Clone + WholeNumber> Clone for DecisionTreeClassifier<XT, YT>
Source§fn clone(&self) -> DecisionTreeClassifier<XT, YT>
fn clone(&self) -> DecisionTreeClassifier<XT, YT>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<XT: Debug + Number, YT: Debug + WholeNumber> Debug for DecisionTreeClassifier<XT, YT>
impl<XT: Debug + Number, YT: Debug + WholeNumber> Debug for DecisionTreeClassifier<XT, YT>
Source§impl<XT: Number, YT: WholeNumber> Default for DecisionTreeClassifier<XT, YT>
impl<XT: Number, YT: WholeNumber> Default for DecisionTreeClassifier<XT, YT>
Auto Trait Implementations§
impl<XT, YT> Freeze for DecisionTreeClassifier<XT, YT>
impl<XT, YT> RefUnwindSafe for DecisionTreeClassifier<XT, YT>where
XT: RefUnwindSafe,
YT: RefUnwindSafe,
impl<XT, YT> Send for DecisionTreeClassifier<XT, YT>
impl<XT, YT> Sync for DecisionTreeClassifier<XT, YT>
impl<XT, YT> Unpin for DecisionTreeClassifier<XT, YT>where
XT: Unpin,
impl<XT, YT> UnwindSafe for DecisionTreeClassifier<XT, YT>where
XT: UnwindSafe,
YT: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.