pub struct OpenAiGptModel { /* private fields */ }
Expand description
§GPT Base model
Base architecture for GPT model. Usually complemented with a task-specific head, such as a language model head. As opposed to GPT2, GPT does not give the possibility to re-use past activations as an input. It is made of the following blocks:
tokens_embed
:token
embeddingspositions_embed
:position
embeddingsh
: Encoder (transformer) made of a vector of layers. Each layer is made of a multi-head attention layer, layer-normalization layers and a MLP made of linear layers.output_hidden_states
: flag indicating if the model should return all hidden states (as opposed to only the last layer)output_attentions
: flag indicating if the model should return activation weights
Implementations§
Source§impl OpenAiGptModel
impl OpenAiGptModel
Sourcepub fn new<'p, P>(p: P, config: &Gpt2Config) -> OpenAiGptModel
pub fn new<'p, P>(p: P, config: &Gpt2Config) -> OpenAiGptModel
Build a new OpenAiGptModel
§Arguments
p
- Variable store path for the root of the GPT modelconfig
-OpenAiGptConfig
object defining the model architecture
§Example
use rust_bert::openai_gpt::{OpenAiGptConfig, OpenAiGptModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = OpenAiGptConfig::from_file(config_path);
let gpt2: OpenAiGptModel = OpenAiGptModel::new(&p.root() / "gpt", &config);
Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Result<OpenAiGptModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool, ) -> Result<OpenAiGptModelOutput, RustBertError>
Forward pass through the model
§Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)token_type_ids
- Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
OpenAiGptModelOutput
containing:output
-Tensor
of shape (batch size, sequence_length, hidden_size) representing the activations of the last hidden stateall_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
§Example
use rust_bert::gpt2::Gpt2Config;
use rust_bert::openai_gpt::OpenAiGptModel;
let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
.expand(&[batch_size, sequence_length], true);
let model_output = no_grad(|| {
gpt_model
.forward_t(
Some(&input_tensor),
Some(&attention_mask),
Some(&token_type_ids),
Some(&position_ids),
None,
false,
)
.unwrap()
});
Auto Trait Implementations§
impl Freeze for OpenAiGptModel
impl RefUnwindSafe for OpenAiGptModel
impl Send for OpenAiGptModel
impl !Sync for OpenAiGptModel
impl Unpin for OpenAiGptModel
impl UnwindSafe for OpenAiGptModel
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more