Expand description
§GPT (Radford et al.)
Implementation of the GPT2 language model (Improving Language Understanding by Generative Pre-Training Radford, Narasimhan, Salimans, Sutskever 2018).
The base model is implemented in the openai_gpt_model::OpenAiGptModel
struct. The model also includes a language model head: openai_gpt_model::OpenAIGPTLMHeadModel
implementing the common generation_utils::LanguageGenerator
trait shared between the models used for generation (see pipelines
for more information).
§Model set-up and pre-trained weights loading
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. GptTokenizer
using avocab.txt
vocabulary andmerges.txt
2-gram merges
Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::gpt2::Gpt2Config;
use rust_bert::openai_gpt::OpenAiGptModel;
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::OpenAiGptTokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let merges_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let merges_path = merges_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: OpenAiGptTokenizer = OpenAiGptTokenizer::from_file(
vocab_path.to_str().unwrap(),
merges_path.to_str().unwrap(),
true,
)?;
let config = Gpt2Config::from_file(config_path);
let gpt_model = OpenAiGptModel::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- OpenAIGPTLM
Head Model - GPT Language Modeling head
- OpenAI
Generator - Language generation model based on the GPT architecture
- Open
AiGpt Config Resources - GPT Pretrained model config files
- Open
AiGpt Merges Resources - GPT Pretrained model merges files
- Open
AiGpt Model - GPT Base model
- Open
AiGpt Model Output - Container for the OpenAI GPT model output.
- Open
AiGpt Model Resources - GPT Pretrained model weight files
- Open
AiGpt Vocab Resources - GPT Pretrained model vocab files
Type Aliases§
- Open
AiGpt Config - OpenAI GPT model configuration