[−][src]Struct rust_bert::bert::BertForMultipleChoice
BERT for multiple choices
Multiple choices model using a BERT base model and a linear classifier.
Input should be in the form [CLS] Context [SEP] Possible choice [SEP]. The choice is made along the batch axis,
assuming all elements of the batch are alternatives to be chosen from for a given context.
It is made of the following blocks:
bert: Base BertModelclassifier: Linear layer for multiple choices
Implementations
impl BertForMultipleChoice[src]
pub fn new(p: &Path, config: &BertConfig) -> BertForMultipleChoice[src]
Build a new BertForMultipleChoice
Arguments
p- Variable store path for the root of the BertForMultipleChoice modelconfig-BertConfigobject defining the model architecture
Example
use rust_bert::bert::{BertConfig, BertForMultipleChoice}; use tch::{nn, Device}; use rust_bert::Config; use std::path::Path; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = BertConfig::from_file(config_path); let bert = BertForMultipleChoice::new(&(&p.root() / "bert"), &config);
pub fn forward_t(
&self,
input_ids: Tensor,
mask: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
train: bool
) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)[src]
&self,
input_ids: Tensor,
mask: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
train: bool
) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
Forward pass through the model
Arguments
input_ids- Input tensor of shape (batch size, sequence_length).mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1token_type_ids-Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. [SEP]) and 1 for the second sentence. If None set to 0.position_ids- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
output-Tensorof shape (1, batch size) containing the logits for each of the alternatives givenhidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
let (num_choices, sequence_length) = (3, 128); let input_tensor = Tensor::rand(&[num_choices, sequence_length], (Int64, device)); let mask = Tensor::zeros(&[num_choices, sequence_length], (Int64, device)); let token_type_ids = Tensor::zeros(&[num_choices, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[num_choices, sequence_length], true); let (choices, all_hidden_states, all_attentions) = no_grad(|| { bert_model .forward_t(input_tensor, Some(mask), Some(token_type_ids), Some(position_ids), false) });
Auto Trait Implementations
impl !RefUnwindSafe for BertForMultipleChoice
impl !Send for BertForMultipleChoice
impl !Sync for BertForMultipleChoice
impl Unpin for BertForMultipleChoice
impl !UnwindSafe for BertForMultipleChoice
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,