[−][src]Module rust_bert::bert
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al.)
Implementation of the BERT language model (https://arxiv.org/abs/1810.04805 Devlin, Chang, Lee, Toutanova, 2018).
The base model is implemented in the bert::BertModel struct. Several language model heads have also been implemented, including:
- Masked language model:
bert::BertForMaskedLM - Multiple choices:
bert:BertForMultipleChoice - Question answering:
bert::BertForQuestionAnswering - Sequence classification:
bert::BertForSequenceClassification - Token classification (e.g. NER, POS tagging):
bert::BertForTokenClassification
Model set-up and pre-trained weights loading
A full working example is provided in examples/bert.rs, run with cargo run --example bert.
The example below illustrate a Masked language model example, the structure is similar for other models.
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.binweights to the.otformat. BertTokenizerusing avocab.txtvocabulary Pretrained models are available and can be downloaded using RemoteResources.
use rust_tokenizers::BertTokenizer; use tch::{nn, Device}; use rust_bert::bert::{BertForMaskedLM, BertConfig}; use rust_bert::Config; use rust_bert::resources::{Resource, download_resource, LocalResource}; let config_resource = Resource::Local(LocalResource { local_path: PathBuf::from("path/to/config.json")}); let vocab_resource = Resource::Local(LocalResource { local_path: PathBuf::from("path/to/vocab.txt")}); let weights_resource = Resource::Local(LocalResource { local_path: PathBuf::from("path/to/model.ot")}); let config_path = download_resource(&config_resource)?; let vocab_path = download_resource(&vocab_resource)?; let weights_path = download_resource(&weights_resource)?; let device = Device::cuda_if_available(); let mut vs = nn::VarStore::new(device); let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true); let config = BertConfig::from_file(config_path); let bert_model = BertForMaskedLM::new(&vs.root(), &config); vs.load(weights_path)?;
Structs
| BertConfig | BERT model configuration |
| BertConfigResources | BERT Pretrained model config files |
| BertEmbeddings | BertEmbeddings implementation for BERT model |
| BertForMaskedLM | BERT for masked language model |
| BertForMultipleChoice | BERT for multiple choices |
| BertForQuestionAnswering | BERT for question answering |
| BertForSequenceClassification | BERT for sequence classification |
| BertForTokenClassification | BERT for token classification (e.g. NER, POS) |
| BertModel | BERT Base model |
| BertModelResources | BERT Pretrained model weight files |
| BertVocabResources | BERT Pretrained model vocab files |
Enums
| Activation | Activation function used in the attention layer and masked language model head |
Traits
| BertEmbedding | BertEmbedding trait (for use in BertModel or RoBERTaModel) |