Struct rust_bert::models::distilbert::DistilBertModelMaskedLM
source · pub struct DistilBertModelMaskedLM { /* private fields */ }Expand description
DistilBERT for masked language model
Base DistilBERT model with a masked language model head to predict missing tokens, for example "Looks like one [MASK] is missing" -> "person"
It is made of the following blocks:
distil_bert_model: Base DistilBertModelvocab_transform:linear layer for classification of size (hidden_dim, hidden_dim)vocab_layer_norm: layer normalizationvocab_projector: linear layer for classification of size (hidden_dim, vocab_size) with weights tied to the token embeddings
Implementations§
source§impl DistilBertModelMaskedLM
impl DistilBertModelMaskedLM
sourcepub fn new<'p, P>(p: P, config: &DistilBertConfig) -> DistilBertModelMaskedLM
pub fn new<'p, P>(p: P, config: &DistilBertConfig) -> DistilBertModelMaskedLM
Build a new DistilBertModelMaskedLM for sequence classification
Arguments
p- Variable store path for the root of the DistilBertModelMaskedLM modelconfig-DistilBertConfigobject defining the model architecture
Example
use rust_bert::distilbert::{DistilBertConfig, DistilBertModelMaskedLM};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = DistilBertConfig::from_file(config_path);
let distil_bert = DistilBertModelMaskedLM::new(&p.root() / "distilbert", &config);sourcepub fn forward_t(
&self,
input: Option<&Tensor>,
mask: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<DistilBertMaskedLMOutput, RustBertError>
pub fn forward_t( &self, input: Option<&Tensor>, mask: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool ) -> Result<DistilBertMaskedLMOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds)mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids)train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
DistilBertMaskedLMOutputcontaining:prediction_scores-Tensorof shape (batch size, sequence_length, vocab_size)all_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::distilbert::{DistilBertConfig, DistilBertModelMaskedLM};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
distilbert_model
.forward_t(Some(&input_tensor), Some(&mask), None, false)
.unwrap()
});Auto Trait Implementations§
impl RefUnwindSafe for DistilBertModelMaskedLM
impl Send for DistilBertModelMaskedLM
impl !Sync for DistilBertModelMaskedLM
impl Unpin for DistilBertModelMaskedLM
impl UnwindSafe for DistilBertModelMaskedLM
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more