Module rust_bert::models::distilbert
source · Expand description
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (Sanh et al.)
Implementation of the DistilBERT language model (https://arxiv.org/abs/1910.01108 Sanh, Debut, Chaumond, Wolf, 2019).
The base model is implemented in the distilbert_model::DistilBertModel struct. Several language model heads have also been implemented, including:
- Masked language model:
distilbert_model::DistilBertForMaskedLM - Question answering:
distilbert_model::DistilBertForQuestionAnswering - Sequence classification:
distilbert_model::DistilBertForSequenceClassification - Token classification (e.g. NER, POS tagging):
distilbert_model::DistilBertForTokenClassification
Model set-up and pre-trained weights loading
The example below illustrate a DistilBERT Masked language model example, the structure is similar for other models. All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.binweights to the.otformat. BertTokenizerusing avocab.txtvocabulary Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::distilbert::{
DistilBertConfig, DistilBertConfigResources, DistilBertModelMaskedLM,
DistilBertModelResources, DistilBertVocabResources,
};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::BertTokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: BertTokenizer =
BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?;
let config = DistilBertConfig::from_file(config_path);
let bert_model = DistilBertModelMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs
- DistilBERT model configuration
- DistilBERT Pretrained model config files
- DistilBERT for question answering
- DistilBERT for token classification (e.g. NER, POS)
- Container for the DistilBERT masked LM model output.
- DistilBERT Base model
- DistilBERT for sequence classification
- DistilBERT for masked language model
- DistilBERT Pretrained model weight files
- Container for the DistilBERT question answering model output
- Container for the DistilBERT sequence classification model output
- Container for the DistilBERT token classification model output
- DistilBERT Pretrained model vocab files
Type Aliases
- DistilBERT for sentence embeddings