pub struct TokenClassificationModel { /* private fields */ }Implementations§
source§impl TokenClassificationModel
impl TokenClassificationModel
sourcepub fn new(
config: TokenClassificationConfig
) -> Result<TokenClassificationModel, RustBertError>
pub fn new(
config: TokenClassificationConfig
) -> Result<TokenClassificationModel, RustBertError>
Build a new TokenClassificationModel
Arguments
config-TokenClassificationConfigobject containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
Example
use rust_bert::pipelines::token_classification::TokenClassificationModel;
let model = TokenClassificationModel::new(Default::default())?;sourcepub fn predict<S>(
&self,
input: &[S],
consolidate_sub_tokens: bool,
return_special: bool
) -> Vec<Vec<Token>> ⓘwhere
S: AsRef<str>,
pub fn predict<S>(
&self,
input: &[S],
consolidate_sub_tokens: bool,
return_special: bool
) -> Vec<Vec<Token>> ⓘwhere
S: AsRef<str>,
Classify tokens in a text sequence
Arguments
input-&[&str]Array of texts to extract entities from.consolidate_subtokens- bool flag indicating if subtokens should be consolidated at the token levelreturn_special- bool flag indicating if labels for special tokens should be returned
Returns
Vec<Vec<Token>>containing Tokens with associated labels (for example POS tags) for each input provided
Example
let ner_model = TokenClassificationModel::new(Default::default())?;
let input = [
"My name is Amy. I live in Paris.",
"Paris is a city in France.",
];
let output = ner_model.predict(&input, true, true);