1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019-2020 Guillaume Becquin
// Copyright 2020 Maarten van Gompel
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Token classification pipeline (Named Entity Recognition, Part-of-Speech tagging)
//! More generic token classification pipeline, works with multiple models (Bert, Roberta)
//!
//! ```no_run
//! use rust_bert::pipelines::token_classification::{TokenClassificationModel,TokenClassificationConfig};
//! use rust_bert::resources::RemoteResource;
//! use rust_bert::bert::{BertModelResources, BertVocabResources, BertConfigResources};
//! use rust_bert::pipelines::common::ModelType;
//! # fn main() -> anyhow::Result<()> {
//!
//! //Load a configuration
//! use rust_bert::pipelines::token_classification::LabelAggregationOption;
//! let config = TokenClassificationConfig::new(
//!    ModelType::Bert,
//!    RemoteResource::from_pretrained(BertModelResources::BERT_NER),
//!    RemoteResource::from_pretrained(BertVocabResources::BERT_NER),
//!    RemoteResource::from_pretrained(BertConfigResources::BERT_NER),
//!    None, //merges resource only relevant with ModelType::Roberta
//!    false, //lowercase
//!    None, //strip_accents
//!    None, //add_prefix_space
//!    LabelAggregationOption::Mode
//! );
//!
//! //Create the model
//! let token_classification_model = TokenClassificationModel::new(config)?;
//!
//! let input = [
//!     "My name is Amy. I live in Paris.",
//!     "Paris is a city in France."
//! ];
//! let output = token_classification_model.predict(&input, true, true); //ignore_first_label = true (only returns the NER parts, ignoring first label O)
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```no_run
//! # use rust_bert::pipelines::token_classification::Token;
//! use rust_tokenizers::{Mask, Offset};
//! # let output =
//! [
//!     Token {
//!         text: String::from("[CLS]"),
//!         score: 0.9995001554489136,
//!         label: String::from("O"),
//!         label_index: 0,
//!         sentence: 0,
//!         index: 0,
//!         word_index: 0,
//!         offset: None,
//!         mask: Mask::Special,
//!     },
//!     Token {
//!         text: String::from("My"),
//!         score: 0.9980450868606567,
//!         label: String::from("O"),
//!         label_index: 0,
//!         sentence: 0,
//!         index: 1,
//!         word_index: 1,
//!         offset: Some(Offset { begin: 0, end: 2 }),
//!         mask: Mask::None,
//!     },
//!     Token {
//!         text: String::from("name"),
//!         score: 0.9995062351226807,
//!         label: String::from("O"),
//!         label_index: 0,
//!         sentence: 0,
//!         index: 2,
//!         word_index: 2,
//!         offset: Some(Offset { begin: 3, end: 7 }),
//!         mask: Mask::None,
//!     },
//!     Token {
//!         text: String::from("is"),
//!         score: 0.9997343420982361,
//!         label: String::from("O"),
//!         label_index: 0,
//!         sentence: 0,
//!         index: 3,
//!         word_index: 3,
//!         offset: Some(Offset { begin: 8, end: 10 }),
//!         mask: Mask::None,
//!     },
//!     Token {
//!         text: String::from("Amélie"),
//!         score: 0.9913727683112525,
//!         label: String::from("I-PER"),
//!         label_index: 4,
//!         sentence: 0,
//!         index: 4,
//!         word_index: 4,
//!         offset: Some(Offset { begin: 11, end: 17 }),
//!         mask: Mask::None,
//!     }, // ...
//! ]
//! # ;
//! ```

use crate::albert::AlbertForTokenClassification;
use crate::bert::BertForTokenClassification;
use crate::common::error::RustBertError;
use crate::deberta::DebertaForTokenClassification;
use crate::distilbert::DistilBertForTokenClassification;
use crate::electra::ElectraForTokenClassification;
use crate::fnet::FNetForTokenClassification;
use crate::longformer::LongformerForTokenClassification;
use crate::mobilebert::MobileBertForTokenClassification;
use crate::pipelines::common::{ConfigOption, ModelType, TokenizerOption};
use crate::resources::ResourceProvider;
use crate::roberta::RobertaForTokenClassification;
use crate::xlnet::XLNetForTokenClassification;
use ordered_float::OrderedFloat;
use rust_tokenizers::tokenizer::Tokenizer;
use rust_tokenizers::{
    ConsolidatableTokens, ConsolidatedTokenIterator, Mask, Offset, TokenIdsWithOffsets, TokenTrait,
    TokenizedInput,
};
use serde::{Deserialize, Serialize};
use std::borrow::Borrow;
use std::cmp::min;
use std::collections::HashMap;
use tch::nn::VarStore;
use tch::{nn, no_grad, Device, Kind, Tensor};

use crate::deberta_v2::DebertaV2ForTokenClassification;
#[cfg(feature = "remote")]
use crate::{
    bert::{BertConfigResources, BertModelResources, BertVocabResources},
    resources::RemoteResource,
};

#[derive(Debug, Clone, Serialize, Deserialize)]
/// # Token generated by a `TokenClassificationModel`
pub struct Token {
    /// String representation of the Token
    pub text: String,
    /// Confidence score
    pub score: f64,
    /// Token label (e.g. ORG, LOC in case of NER)
    pub label: String,
    /// Label index
    pub label_index: i64,
    /// Sentence index
    pub sentence: usize,
    /// Token position index
    pub index: u16,
    /// Token word position index
    pub word_index: u16,
    /// Token offsets
    pub offset: Option<Offset>,
    /// Token mask
    pub mask: Mask,
}

impl TokenTrait for Token {
    fn offset(&self) -> Option<Offset> {
        self.offset
    }

    fn mask(&self) -> Mask {
        self.mask
    }

    fn as_str(&self) -> &str {
        self.text.as_str()
    }
}

impl ConsolidatableTokens<Token> for Vec<Token> {
    fn iter_consolidate_tokens(&self) -> ConsolidatedTokenIterator<Token> {
        ConsolidatedTokenIterator::new(self)
    }
}

#[derive(Debug)]
struct InputFeature {
    /// Encoded input ids
    input_ids: Vec<i64>,
    /// Offsets reference to the original string
    offsets: Vec<Option<Offset>>,
    /// Token category (mask)
    mask: Vec<Mask>,
    /// per-token flag indicating if this feature carries the output label for this token
    reference_feature: Vec<bool>,
    /// Reference example index (long inputs may be broken into multiple input features)
    example_index: usize,
}

type LabelAggregationFunction = Box<fn(&[Token]) -> (i64, String)>;

/// # Enum defining the label aggregation method for sub tokens
/// Defines the behaviour for labels aggregation if the consolidation of sub-tokens is enabled.
pub enum LabelAggregationOption {
    /// The label of the first sub token is assigned to the entire token
    First,
    /// The label of the last sub token is assigned to the entire token
    Last,
    /// The most frequent sub- token is  assigned to the entire token
    Mode,
    /// The user can provide a function mapping a `&Vec<Token>` to a `(i64, String)` tuple corresponding to the label index, label String to return
    Custom(LabelAggregationFunction),
}

/// # Configuration for TokenClassificationModel
/// Contains information regarding the model to load and device to place the model on.
pub struct TokenClassificationConfig {
    /// Model type
    pub model_type: ModelType,
    /// Model weights resource (default: pretrained BERT model on CoNLL)
    pub model_resource: Box<dyn ResourceProvider + Send>,
    /// Config resource (default: pretrained BERT model on CoNLL)
    pub config_resource: Box<dyn ResourceProvider + Send>,
    /// Vocab resource (default: pretrained BERT model on CoNLL)
    pub vocab_resource: Box<dyn ResourceProvider + Send>,
    /// Merges resource (default: pretrained BERT model on CoNLL)
    pub merges_resource: Option<Box<dyn ResourceProvider + Send>>,
    /// Automatically lower case all input upon tokenization (assumes a lower-cased model)
    pub lower_case: bool,
    /// Flag indicating if the tokenizer should strip accents (normalization). Only used for BERT / ALBERT models
    pub strip_accents: Option<bool>,
    /// Flag indicating if the tokenizer should add a white space before each tokenized input (needed for some Roberta models)
    pub add_prefix_space: Option<bool>,
    /// Device to place the model on (default: CUDA/GPU when available)
    pub device: Device,
    /// Sub-tokens aggregation method (default: `LabelAggregationOption::First`)
    pub label_aggregation_function: LabelAggregationOption,
    /// Batch size for predictions
    pub batch_size: usize,
}

impl TokenClassificationConfig {
    /// Instantiate a new token classification configuration of the supplied type.
    ///
    /// # Arguments
    ///
    /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded!)
    /// * model - The `ResourceProvider` pointing to the model to load (e.g.  model.ot)
    /// * config - The `ResourceProvider` pointing to the model configuration to load (e.g. config.json)
    /// * vocab - The `ResourceProvider` pointing to the tokenizers' vocabulary to load (e.g.  vocab.txt/vocab.json)
    /// * vocab - An optional `ResourceProvider` pointing to the tokenizers' merge file to load (e.g.  merges.txt), needed only for Roberta.
    /// * lower_case - A `bool` indicating whether the tokenizer should lower case all input (in case of a lower-cased model)
    pub fn new<RM, RC, RV>(
        model_type: ModelType,
        model_resource: RM,
        config_resource: RC,
        vocab_resource: RV,
        merges_resource: Option<RV>,
        lower_case: bool,
        strip_accents: impl Into<Option<bool>>,
        add_prefix_space: impl Into<Option<bool>>,
        label_aggregation_function: LabelAggregationOption,
    ) -> TokenClassificationConfig
    where
        RM: ResourceProvider + Send + 'static,
        RC: ResourceProvider + Send + 'static,
        RV: ResourceProvider + Send + 'static,
    {
        TokenClassificationConfig {
            model_type,
            model_resource: Box::new(model_resource),
            config_resource: Box::new(config_resource),
            vocab_resource: Box::new(vocab_resource),
            merges_resource: merges_resource.map(|r| Box::new(r) as Box<_>),
            lower_case,
            strip_accents: strip_accents.into(),
            add_prefix_space: add_prefix_space.into(),
            device: Device::cuda_if_available(),
            label_aggregation_function,
            batch_size: 64,
        }
    }
}

#[cfg(feature = "remote")]
impl Default for TokenClassificationConfig {
    /// Provides a default CoNLL-2003 NER model (English)
    fn default() -> TokenClassificationConfig {
        TokenClassificationConfig::new(
            ModelType::Bert,
            RemoteResource::from_pretrained(BertModelResources::BERT_NER),
            RemoteResource::from_pretrained(BertConfigResources::BERT_NER),
            RemoteResource::from_pretrained(BertVocabResources::BERT_NER),
            None,
            false,
            None,
            None,
            LabelAggregationOption::First,
        )
    }
}

#[allow(clippy::large_enum_variant)]
/// # Abstraction that holds one particular token sequence classifier model, for any of the supported models
pub enum TokenClassificationOption {
    /// Bert for Token Classification
    Bert(BertForTokenClassification),
    /// DeBERTa for Token Classification
    Deberta(DebertaForTokenClassification),
    /// DeBERTa V2 for Token Classification
    DebertaV2(DebertaV2ForTokenClassification),
    /// DistilBert for Token Classification
    DistilBert(DistilBertForTokenClassification),
    /// MobileBert for Token Classification
    MobileBert(MobileBertForTokenClassification),
    /// Roberta for Token Classification
    Roberta(RobertaForTokenClassification),
    /// XLM Roberta for Token Classification
    XLMRoberta(RobertaForTokenClassification),
    /// Electra for Token Classification
    Electra(ElectraForTokenClassification),
    /// Albert for Token Classification
    Albert(AlbertForTokenClassification),
    /// XLNet for Token Classification
    XLNet(XLNetForTokenClassification),
    /// Longformer for Token Classification
    Longformer(LongformerForTokenClassification),
    /// FNet for Token Classification
    FNet(FNetForTokenClassification),
}

impl TokenClassificationOption {
    /// Instantiate a new token sequence classification model of the supplied type.
    ///
    /// # Arguments
    ///
    /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded)
    /// * `p` - `tch::nn::Path` path to the model file to load (e.g. model.ot)
    /// * `config` - A configuration (the model type of the configuration must be compatible with the value for
    /// `model_type`)
    pub fn new<'p, P>(
        model_type: ModelType,
        p: P,
        config: &ConfigOption,
    ) -> Result<Self, RustBertError>
    where
        P: Borrow<nn::Path<'p>>,
    {
        match model_type {
            ModelType::Bert => {
                if let ConfigOption::Bert(config) = config {
                    Ok(TokenClassificationOption::Bert(
                        BertForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a BertConfig for Bert!".to_string(),
                    ))
                }
            }
            ModelType::Deberta => {
                if let ConfigOption::Deberta(config) = config {
                    Ok(TokenClassificationOption::Deberta(
                        DebertaForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a DebertaConfig for DeBERTa!".to_string(),
                    ))
                }
            }
            ModelType::DebertaV2 => {
                if let ConfigOption::DebertaV2(config) = config {
                    Ok(TokenClassificationOption::DebertaV2(
                        DebertaV2ForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a DebertaConfig for DeBERTa V2!".to_string(),
                    ))
                }
            }
            ModelType::DistilBert => {
                if let ConfigOption::DistilBert(config) = config {
                    Ok(TokenClassificationOption::DistilBert(
                        DistilBertForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a DistilBertConfig for DistilBert!".to_string(),
                    ))
                }
            }
            ModelType::MobileBert => {
                if let ConfigOption::MobileBert(config) = config {
                    Ok(TokenClassificationOption::MobileBert(
                        MobileBertForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a MobileBertConfig for MobileBert!".to_string(),
                    ))
                }
            }
            ModelType::Roberta => {
                if let ConfigOption::Roberta(config) = config {
                    Ok(TokenClassificationOption::Roberta(
                        RobertaForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a RobertaConfig for Roberta!".to_string(),
                    ))
                }
            }
            ModelType::XLMRoberta => {
                if let ConfigOption::Roberta(config) = config {
                    Ok(TokenClassificationOption::XLMRoberta(
                        RobertaForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a RobertaConfig for XLMRoberta!".to_string(),
                    ))
                }
            }
            ModelType::Electra => {
                if let ConfigOption::Electra(config) = config {
                    Ok(TokenClassificationOption::Electra(
                        ElectraForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a BertConfig for Roberta!".to_string(),
                    ))
                }
            }
            ModelType::Albert => {
                if let ConfigOption::Albert(config) = config {
                    Ok(TokenClassificationOption::Albert(
                        AlbertForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply an AlbertConfig for Albert!".to_string(),
                    ))
                }
            }
            ModelType::XLNet => {
                if let ConfigOption::XLNet(config) = config {
                    Ok(TokenClassificationOption::XLNet(
                        XLNetForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply an AlbertConfig for Albert!".to_string(),
                    ))
                }
            }
            ModelType::Longformer => {
                if let ConfigOption::Longformer(config) = config {
                    Ok(TokenClassificationOption::Longformer(
                        LongformerForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a LongformerConfig for Longformer!".to_string(),
                    ))
                }
            }
            ModelType::FNet => {
                if let ConfigOption::FNet(config) = config {
                    Ok(TokenClassificationOption::FNet(
                        FNetForTokenClassification::new(p, config)?,
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply an FNetConfig for FNet!".to_string(),
                    ))
                }
            }
            _ => Err(RustBertError::InvalidConfigurationError(format!(
                "Token classification not implemented for {:?}!",
                model_type
            ))),
        }
    }

    /// Returns the `ModelType` for this TokenClassificationOption
    pub fn model_type(&self) -> ModelType {
        match *self {
            Self::Bert(_) => ModelType::Bert,
            Self::Deberta(_) => ModelType::Deberta,
            Self::DebertaV2(_) => ModelType::DebertaV2,
            Self::Roberta(_) => ModelType::Roberta,
            Self::XLMRoberta(_) => ModelType::XLMRoberta,
            Self::DistilBert(_) => ModelType::DistilBert,
            Self::MobileBert(_) => ModelType::MobileBert,
            Self::Electra(_) => ModelType::Electra,
            Self::Albert(_) => ModelType::Albert,
            Self::XLNet(_) => ModelType::XLNet,
            Self::Longformer(_) => ModelType::Longformer,
            Self::FNet(_) => ModelType::FNet,
        }
    }

    fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        mask: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeds: Option<&Tensor>,
        train: bool,
    ) -> Tensor {
        match *self {
            Self::Bert(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::Deberta(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .expect("Error in DeBERTa forward_t")
                    .logits
            }
            Self::DebertaV2(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .expect("Error in DeBERTa V2 forward_t")
                    .logits
            }
            Self::DistilBert(ref model) => {
                model
                    .forward_t(input_ids, mask, input_embeds, train)
                    .expect("Error in distilbert forward_t")
                    .logits
            }
            Self::MobileBert(ref model) => {
                model
                    .forward_t(input_ids, None, None, input_embeds, mask, train)
                    .expect("Error in mobilebert forward_t")
                    .logits
            }
            Self::Roberta(ref model) | Self::XLMRoberta(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::Electra(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::Albert(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::XLNet(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        None,
                        None,
                        None,
                        token_type_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::Longformer(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        None,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .expect("Error in longformer forward_t")
                    .logits
            }
            Self::FNet(ref model) => {
                model
                    .forward_t(input_ids, token_type_ids, position_ids, input_embeds, train)
                    .expect("Error in fnet forward_t")
                    .logits
            }
        }
    }
}

/// # TokenClassificationModel for Named Entity Recognition or Part-of-Speech tagging
pub struct TokenClassificationModel {
    tokenizer: TokenizerOption,
    token_sequence_classifier: TokenClassificationOption,
    label_mapping: HashMap<i64, String>,
    var_store: VarStore,
    label_aggregation_function: LabelAggregationOption,
    max_length: usize,
    batch_size: usize,
}

impl TokenClassificationModel {
    /// Build a new `TokenClassificationModel`
    ///
    /// # Arguments
    ///
    /// * `config` - `TokenClassificationConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::token_classification::TokenClassificationModel;
    ///
    /// let model = TokenClassificationModel::new(Default::default())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(
        config: TokenClassificationConfig,
    ) -> Result<TokenClassificationModel, RustBertError> {
        let config_path = config.config_resource.get_local_path()?;
        let vocab_path = config.vocab_resource.get_local_path()?;
        let weights_path = config.model_resource.get_local_path()?;
        let merges_path = if let Some(merges_resource) = &config.merges_resource {
            Some(merges_resource.get_local_path()?)
        } else {
            None
        };
        let device = config.device;
        let label_aggregation_function = config.label_aggregation_function;

        let tokenizer = TokenizerOption::from_file(
            config.model_type,
            vocab_path.to_str().unwrap(),
            merges_path.as_deref().map(|path| path.to_str().unwrap()),
            config.lower_case,
            config.strip_accents,
            config.add_prefix_space,
        )?;
        let mut var_store = VarStore::new(device);
        let model_config = ConfigOption::from_file(config.model_type, config_path);
        let max_length = model_config
            .get_max_len()
            .map(|v| v as usize)
            .unwrap_or(usize::MAX);
        let token_sequence_classifier =
            TokenClassificationOption::new(config.model_type, var_store.root(), &model_config)?;
        let label_mapping = model_config.get_label_mapping().clone();
        let batch_size = config.batch_size;
        var_store.load(weights_path)?;
        Ok(TokenClassificationModel {
            tokenizer,
            token_sequence_classifier,
            label_mapping,
            var_store,
            label_aggregation_function,
            max_length,
            batch_size,
        })
    }

    fn generate_features<S>(&self, input: S, example_index: usize) -> Vec<InputFeature>
    where
        S: AsRef<str>,
    {
        let tokenized_input = self.tokenizer.tokenize_with_offsets(input.as_ref());
        let encoded_input = TokenIdsWithOffsets {
            ids: self
                .tokenizer
                .convert_tokens_to_ids(&tokenized_input.tokens),
            offsets: tokenized_input.offsets,
            reference_offsets: tokenized_input.reference_offsets,
            masks: tokenized_input.masks,
        };

        let sequence_added_tokens = self
            .tokenizer
            .build_input_with_special_tokens(
                TokenIdsWithOffsets {
                    ids: vec![],
                    offsets: vec![],
                    reference_offsets: vec![],
                    masks: vec![],
                },
                None,
            )
            .token_ids
            .len();

        let max_content_length = self.max_length - sequence_added_tokens;
        let doc_stride = self.max_length / 4;

        let mut spans: Vec<InputFeature> = vec![];
        let mut start_token = 0_usize;
        let total_length = encoded_input.ids.len();

        while (spans.len() * doc_stride) < encoded_input.ids.len() {
            let end_token = min(start_token + max_content_length, total_length);
            let sub_encoded_input = TokenIdsWithOffsets {
                ids: encoded_input.ids[start_token..end_token].to_vec(),
                offsets: encoded_input.offsets[start_token..end_token].to_vec(),
                reference_offsets: encoded_input.reference_offsets[start_token..end_token].to_vec(),
                masks: encoded_input.masks[start_token..end_token].to_vec(),
            };

            let encoded_span = self
                .tokenizer
                .build_input_with_special_tokens(sub_encoded_input, None);

            let reference_feature = self.get_reference_feature_flag(
                start_token,
                end_token,
                total_length,
                doc_stride,
                &encoded_span,
            );

            let feature = InputFeature {
                input_ids: encoded_span.token_ids,
                offsets: encoded_span.token_offsets,
                mask: encoded_span.mask,
                reference_feature,
                example_index,
            };
            spans.push(feature);
            if end_token == encoded_input.ids.len() {
                break;
            }
            start_token = end_token - doc_stride;
        }
        spans
    }

    fn get_reference_feature_flag(
        &self,
        start_token: usize,
        end_token: usize,
        total_length: usize,
        doc_stride: usize,
        encoded_span: &TokenizedInput,
    ) -> Vec<bool> {
        // set halfway through the doc_stride to be false if the feature is not the first/last
        let start_cutoff = if start_token > 0 {
            let leading_special_tokens = {
                let mut counter = 0;
                let mut masks = encoded_span.mask.iter();
                while masks.next().unwrap_or(&Mask::None) == &Mask::Special {
                    counter += 1;
                }
                counter
            };
            doc_stride / 2 + leading_special_tokens
        } else {
            0
        };
        let end_cutoff = if end_token < total_length {
            let trailing_special_tokens = {
                let mut counter = 0;
                let mut masks = encoded_span.mask.iter().rev();
                while masks.next().unwrap_or(&Mask::None) == &Mask::Special {
                    counter += 1;
                }
                counter
            };
            encoded_span.token_ids.len() - doc_stride / 2 - trailing_special_tokens
        } else {
            encoded_span.token_ids.len()
        };
        let mut reference_feature = vec![true; encoded_span.token_ids.len()];
        reference_feature[..start_cutoff]
            .iter_mut()
            .for_each(|v| *v = false);
        reference_feature[end_cutoff..]
            .iter_mut()
            .for_each(|v| *v = false);
        reference_feature
    }

    /// Classify tokens in a text sequence
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to extract entities from.
    /// * `consolidate_subtokens` - bool flag indicating if subtokens should be consolidated at the token level
    /// * `return_special` - bool flag indicating if labels for special tokens should be returned
    ///
    /// # Returns
    ///
    /// * `Vec<Vec<Token>>` containing Tokens with associated labels (for example POS tags) for each input provided
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// # use rust_bert::pipelines::token_classification::TokenClassificationModel;
    ///
    /// let ner_model = TokenClassificationModel::new(Default::default())?;
    /// let input = [
    ///     "My name is Amy. I live in Paris.",
    ///     "Paris is a city in France.",
    /// ];
    /// let output = ner_model.predict(&input, true, true);
    /// # Ok(())
    /// # }
    /// ```
    pub fn predict<S>(
        &self,
        input: &[S],
        consolidate_sub_tokens: bool,
        return_special: bool,
    ) -> Vec<Vec<Token>>
    where
        S: AsRef<str>,
    {
        let mut features: Vec<InputFeature> = input
            .iter()
            .enumerate()
            .flat_map(|(example_index, example)| self.generate_features(example, example_index))
            .collect();

        let mut example_tokens_map: Vec<Vec<Token>> = vec![Vec::new(); input.len()];
        let mut start = 0usize;
        let len_features = features.len();

        while start < len_features {
            let end = start + min(len_features - start, self.batch_size);

            no_grad(|| {
                let batch_features = &mut features[start..end];
                let (input_ids, attention_masks) = self.pad_features(batch_features);
                let output = self.token_sequence_classifier.forward_t(
                    Some(&input_ids),
                    Some(&attention_masks),
                    None,
                    None,
                    None,
                    false,
                );
                let score = output.exp()
                    / output
                        .exp()
                        .sum_dim_intlist([-1].as_slice(), true, Kind::Float);
                let label_indices = score.argmax(-1, true);
                for sentence_idx in 0..label_indices.size()[0] {
                    let labels = label_indices.get(sentence_idx);
                    let feature = &features[sentence_idx as usize];
                    let sentence_reference_flag = &feature.reference_feature;
                    let original_chars = input[feature.example_index]
                        .as_ref()
                        .chars()
                        .collect::<Vec<char>>();
                    let mut word_idx: u16 = 0;
                    for position_idx in sentence_reference_flag
                        .iter()
                        .enumerate()
                        .filter(|(_, flag)| **flag)
                        .map(|(pos, _)| pos)
                    {
                        let mask = feature.mask[position_idx];
                        if (mask == Mask::Special) & (!return_special) {
                            continue;
                        }
                        if !(mask == Mask::Continuation) {
                            word_idx += 1;
                        }
                        let token = {
                            self.decode_token(
                                &original_chars,
                                feature,
                                &input_ids,
                                &labels,
                                &score,
                                sentence_idx,
                                position_idx as i64,
                                word_idx,
                            )
                        };
                        example_tokens_map[feature.example_index].push(token);
                    }
                }
            });
            start = end;
        }
        let mut tokens = example_tokens_map;

        if consolidate_sub_tokens {
            self.consolidate_tokens(&mut tokens, &self.label_aggregation_function);
        }
        tokens
    }

    fn pad_features(&self, features: &mut [InputFeature]) -> (Tensor, Tensor) {
        let max_len = features
            .iter()
            .map(|feature| feature.input_ids.len())
            .max()
            .unwrap();

        let attention_masks = features
            .iter()
            .map(|feature| &feature.input_ids)
            .map(|input| {
                let mut attention_mask = Vec::with_capacity(max_len);
                attention_mask.resize(input.len(), 1);
                attention_mask.resize(max_len, 0);
                attention_mask
            })
            .map(|input| Tensor::of_slice(&(input)))
            .collect::<Vec<_>>();

        let padding_index = self
            .tokenizer
            .get_pad_id()
            .expect("Only tokenizers with a padding index can be used for token classification");
        for feature in features.iter_mut() {
            feature.input_ids.resize(max_len, padding_index);
            feature.offsets.resize(max_len, None);
            feature.reference_feature.resize(max_len, false);
        }

        let padded_input_ids = features
            .iter()
            .map(|input| Tensor::of_slice(input.input_ids.as_slice()))
            .collect::<Vec<_>>();

        let input_ids = Tensor::stack(&padded_input_ids, 0).to(self.var_store.device());
        let attention_masks = Tensor::stack(&attention_masks, 0).to(self.var_store.device());
        (input_ids, attention_masks)
    }

    fn decode_token(
        &self,
        original_sentence_chars: &[char],
        sentence_tokens: &InputFeature,
        input_tensor: &Tensor,
        labels: &Tensor,
        score: &Tensor,
        sentence_idx: i64,
        position_idx: i64,
        word_index: u16,
    ) -> Token {
        let label_id = labels.int64_value(&[position_idx]);
        let token_id = input_tensor.int64_value(&[sentence_idx, position_idx]);

        let offsets = &sentence_tokens.offsets[position_idx as usize];

        let text = match offsets {
            None => match self.tokenizer {
                TokenizerOption::Bert(ref tokenizer) => {
                    Tokenizer::decode(tokenizer, &[token_id], false, false)
                }
                TokenizerOption::Roberta(ref tokenizer) => {
                    Tokenizer::decode(tokenizer, &[token_id], false, false)
                }
                TokenizerOption::XLMRoberta(ref tokenizer) => {
                    Tokenizer::decode(tokenizer, &[token_id], false, false)
                }
                TokenizerOption::Albert(ref tokenizer) => {
                    Tokenizer::decode(tokenizer, &[token_id], false, false)
                }
                TokenizerOption::XLNet(ref tokenizer) => {
                    Tokenizer::decode(tokenizer, &[token_id], false, false)
                }
                _ => panic!(
                    "Token classification not implemented for {:?}!",
                    self.tokenizer.model_type()
                ),
            },
            Some(offsets) => {
                let (start_char, end_char) = (offsets.begin as usize, offsets.end as usize);
                let end_char = min(end_char, original_sentence_chars.len());
                let text = original_sentence_chars[start_char..end_char]
                    .iter()
                    .collect();
                text
            }
        };

        Token {
            text,
            score: score.double_value(&[sentence_idx, position_idx, label_id]),
            label: self
                .label_mapping
                .get(&label_id)
                .expect("Index out of vocabulary bounds.")
                .to_owned(),
            label_index: label_id,
            sentence: sentence_idx as usize,
            index: position_idx as u16,
            word_index,
            offset: offsets.to_owned(),
            mask: sentence_tokens.mask[position_idx as usize],
        }
    }

    fn consolidate_tokens(
        &self,
        tokens: &mut Vec<Vec<Token>>,
        label_aggregation_function: &LabelAggregationOption,
    ) {
        for sequence_tokens in tokens {
            let mut tokens_to_replace = vec![];
            let token_iter = sequence_tokens.iter_consolidate_tokens();
            let mut cursor = 0;

            for sub_tokens in token_iter {
                if sub_tokens.len() > 1 {
                    let (label_index, label) =
                        self.consolidate_labels(sub_tokens, label_aggregation_function);
                    let sentence = (sub_tokens[0]).sentence;
                    let index = (sub_tokens[0]).index;
                    let word_index = (sub_tokens[0]).word_index;
                    let offset_start = sub_tokens
                        .first()
                        .unwrap()
                        .offset
                        .as_ref()
                        .map(|offset| offset.begin);
                    let offset_end = sub_tokens
                        .last()
                        .unwrap()
                        .offset
                        .as_ref()
                        .map(|offset| offset.end);
                    let offset = if let (Some(offset_start), Some(offset_end)) =
                        (offset_start, offset_end)
                    {
                        Some(Offset::new(offset_start, offset_end))
                    } else {
                        None
                    };
                    let mut text = String::new();
                    let mut score = 1f64;
                    for current_sub_token in sub_tokens.iter() {
                        text.push_str(current_sub_token.text.as_str());
                        score *= if current_sub_token.label_index == label_index {
                            current_sub_token.score
                        } else {
                            1.0 - current_sub_token.score
                        };
                    }
                    let token = Token {
                        text,
                        score,
                        label,
                        label_index,
                        sentence,
                        index,
                        word_index,
                        offset,
                        mask: Default::default(),
                    };
                    tokens_to_replace.push(((cursor, cursor + sub_tokens.len()), token));
                }
                cursor += sub_tokens.len();
            }
            for ((start, end), token) in tokens_to_replace.into_iter().rev() {
                sequence_tokens.splice(start..end, [token].iter().cloned());
            }
        }
    }

    fn consolidate_labels(
        &self,
        tokens: &[Token],
        aggregation: &LabelAggregationOption,
    ) -> (i64, String) {
        match aggregation {
            LabelAggregationOption::First => {
                let token = tokens.first().unwrap();
                (token.label_index, token.label.clone())
            }
            LabelAggregationOption::Last => {
                let token = tokens.last().unwrap();
                (token.label_index, token.label.clone())
            }
            LabelAggregationOption::Mode => {
                let counts = tokens.iter().fold(HashMap::new(), |mut m, c| {
                    let (ref mut count, ref mut score) = m
                        .entry((c.label_index, c.label.as_str()))
                        .or_insert((0, 0.0_f64));
                    *count += 1;
                    *score = score.max(c.score);
                    m
                });
                counts
                    .into_iter()
                    .max_by_key(|&(_, (count, score))| (count, OrderedFloat(score)))
                    .map(|((label_index, label), _)| (label_index, label.to_owned()))
                    .unwrap()
            }
            LabelAggregationOption::Custom(function) => function(tokens),
        }
    }
}