Struct rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel [−][src]
Implementations
impl ZeroShotClassificationModel
[src]
pub fn new(
config: ZeroShotClassificationConfig
) -> Result<ZeroShotClassificationModel, RustBertError>
[src]
config: ZeroShotClassificationConfig
) -> Result<ZeroShotClassificationModel, RustBertError>
Build a new ZeroShotClassificationModel
Arguments
config
-SequenceClassificationConfig
object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
Example
use rust_bert::pipelines::sequence_classification::SequenceClassificationModel; let model = SequenceClassificationModel::new(Default::default())?;
pub fn predict<'a, S, T>(
&self,
inputs: S,
labels: T,
template: Option<Box<dyn Fn(&str) -> String>>,
max_length: usize
) -> Vec<Label> where
S: AsRef<[&'a str]>,
T: AsRef<[&'a str]>,
[src]
&self,
inputs: S,
labels: T,
template: Option<Box<dyn Fn(&str) -> String>>,
max_length: usize
) -> Vec<Label> where
S: AsRef<[&'a str]>,
T: AsRef<[&'a str]>,
Zero shot classification with 1 (and exactly 1) true label.
Arguments
input
-&[&str]
Array of texts to classify.labels
-&[&str]
Possible labels for the inputs.template
-Option<Box<dyn Fn(&str) -> String>>
closure to build label propositions. If None, will default to"This example is {}."
.max_length
-usize
Maximum sequence length for the inputs. If needed, the input sequence will be truncated before the label template.
Returns
Vec<Label>
containing with the most likely label for each input sentence.
Example
use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel; let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?; let input_sentence = "Who are you voting for in 2020?"; let input_sequence_2 = "The prime minister has announced a stimulus package which was widely criticized by the opposition."; let candidate_labels = &["politics", "public health", "economics", "sports"]; let output = sequence_classification_model.predict( &[input_sentence, input_sequence_2], candidate_labels, None, 128, );
outputs:
let output = [ Label { text: "politics".to_string(), score: 0.959, id: 0, sentence: 0, }, Label { text: "economy".to_string(), score: 0.642, id: 2, sentence: 1, }, ] .to_vec();
pub fn predict_multilabel<'a, S, T>(
&self,
inputs: S,
labels: T,
template: Option<Box<dyn Fn(&str) -> String>>,
max_length: usize
) -> Vec<Vec<Label>> where
S: AsRef<[&'a str]>,
T: AsRef<[&'a str]>,
[src]
&self,
inputs: S,
labels: T,
template: Option<Box<dyn Fn(&str) -> String>>,
max_length: usize
) -> Vec<Vec<Label>> where
S: AsRef<[&'a str]>,
T: AsRef<[&'a str]>,
Zero shot multi-label classification with 0, 1 or no true label.
Arguments
input
-&[&str]
Array of texts to classify.labels
-&[&str]
Possible labels for the inputs.template
-Option<Box<dyn Fn(&str) -> String>>
closure to build label propositions. If None, will default to"This example is about {}."
.max_length
-usize
Maximum sequence length for the inputs. If needed, the input sequence will be truncated before the label template.
Returns
Vec<Vec<Label>>
containing a vector of labels and their probability for each input text
Example
use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel; let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?; let input_sentence = "Who are you voting for in 2020?"; let input_sequence_2 = "The central bank is meeting today to discuss monetary policy."; let candidate_labels = &["politics", "public health", "economics", "sports"]; let output = sequence_classification_model.predict_multilabel( &[input_sentence, input_sequence_2], candidate_labels, None, 128, );
outputs:
let output = [ [ Label { text: "politics".to_string(), score: 0.972, id: 0, sentence: 0, }, Label { text: "public health".to_string(), score: 0.032, id: 1, sentence: 0, }, Label { text: "economy".to_string(), score: 0.006, id: 2, sentence: 0, }, Label { text: "sports".to_string(), score: 0.004, id: 3, sentence: 0, }, ], [ Label { text: "politics".to_string(), score: 0.975, id: 0, sentence: 1, }, Label { text: "economy".to_string(), score: 0.852, id: 2, sentence: 1, }, Label { text: "public health".to_string(), score: 0.0818, id: 1, sentence: 1, }, Label { text: "sports".to_string(), score: 0.001, id: 3, sentence: 1, }, ], ] .to_vec();
Auto Trait Implementations
impl !RefUnwindSafe for ZeroShotClassificationModel
impl Send for ZeroShotClassificationModel
impl !Sync for ZeroShotClassificationModel
impl Unpin for ZeroShotClassificationModel
impl UnwindSafe for ZeroShotClassificationModel
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,