1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019-2020 Guillaume Becquin
// Copyright 2020 Maarten van Gompel
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Zero-shot classification pipeline
//! Performs zero-shot classification on input sentences with provided labels using a model fine-tuned for Natural Language Inference.
//! The default model is a BART model fine-tuned on a MNLI. From a list of input sequences to classify and a list of target labels,
//! single-class or multi-label classification is performed, translating the classification task to an inference task.
//! The default template for translation to inference task is `This example is about {}.`. This template can be updated to a more specific
//! value that may match better the use case, for example `This review is about a {product_class}`.
//!
//! - `predict` performs single-class classification (one and exactly one label must be true for each provided input)
//! - `predict_multilabel` performs multi-label classification (zero, one or more labels may be true for each provided input)
//!
//! ```no_run
//! # use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel;
//! # fn main() -> anyhow::Result<()> {
//! let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?;
//!  let input_sentence = "Who are you voting for in 2020?";
//!  let input_sequence_2 = "The prime minister has announced a stimulus package which was widely criticized by the opposition.";
//!  let candidate_labels = &["politics", "public health", "economics", "sports"];
//!  let output = sequence_classification_model.predict_multilabel(
//!      &[input_sentence, input_sequence_2],
//!      candidate_labels,
//!      None,
//!      128,
//!  );
//! # Ok(())
//! # }
//! ```
//!
//! outputs:
//! ```no_run
//! # use rust_bert::pipelines::sequence_classification::Label;
//! let output = [
//!     [
//!         Label {
//!             text: "politics".to_string(),
//!             score: 0.972,
//!             id: 0,
//!             sentence: 0,
//!         },
//!         Label {
//!             text: "public health".to_string(),
//!             score: 0.032,
//!             id: 1,
//!             sentence: 0,
//!         },
//!         Label {
//!             text: "economy".to_string(),
//!             score: 0.006,
//!             id: 2,
//!             sentence: 0,
//!         },
//!         Label {
//!             text: "sports".to_string(),
//!             score: 0.004,
//!             id: 3,
//!             sentence: 0,
//!         },
//!     ],
//!     [
//!         Label {
//!             text: "politics".to_string(),
//!             score: 0.943,
//!             id: 0,
//!             sentence: 1,
//!         },
//!         Label {
//!             text: "economy".to_string(),
//!             score: 0.985,
//!             id: 2,
//!             sentence: 1,
//!         },
//!         Label {
//!             text: "public health".to_string(),
//!             score: 0.0818,
//!             id: 1,
//!             sentence: 1,
//!         },
//!         Label {
//!             text: "sports".to_string(),
//!             score: 0.001,
//!             id: 3,
//!             sentence: 1,
//!         },
//!     ],
//! ]
//! .to_vec();
//! ```

use crate::albert::AlbertForSequenceClassification;
use crate::bart::{
    BartConfigResources, BartForSequenceClassification, BartMergesResources, BartModelResources,
    BartVocabResources,
};
use crate::bert::BertForSequenceClassification;
use crate::distilbert::DistilBertModelClassifier;
use crate::longformer::LongformerForSequenceClassification;
use crate::mobilebert::MobileBertForSequenceClassification;
use crate::pipelines::common::{ConfigOption, ModelType, TokenizerOption};
use crate::pipelines::sequence_classification::Label;
use crate::resources::{RemoteResource, Resource};
use crate::roberta::RobertaForSequenceClassification;
use crate::xlnet::XLNetForSequenceClassification;
use crate::RustBertError;
use itertools::Itertools;
use rust_tokenizers::tokenizer::TruncationStrategy;
use rust_tokenizers::TokenizedInput;
use std::borrow::Borrow;
use tch::kind::Kind::{Bool, Float};
use tch::nn::VarStore;
use tch::{nn, no_grad, Device, Tensor};

/// # Configuration for ZeroShotClassificationModel
/// Contains information regarding the model to load and device to place the model on.
pub struct ZeroShotClassificationConfig {
    /// Model type
    pub model_type: ModelType,
    /// Model weights resource (default: pretrained BERT model on CoNLL)
    pub model_resource: Resource,
    /// Config resource (default: pretrained BERT model on CoNLL)
    pub config_resource: Resource,
    /// Vocab resource (default: pretrained BERT model on CoNLL)
    pub vocab_resource: Resource,
    /// Merges resource (default: None)
    pub merges_resource: Option<Resource>,
    /// Automatically lower case all input upon tokenization (assumes a lower-cased model)
    pub lower_case: bool,
    /// Flag indicating if the tokenizer should strip accents (normalization). Only used for BERT / ALBERT models
    pub strip_accents: Option<bool>,
    /// Flag indicating if the tokenizer should add a white space before each tokenized input (needed for some Roberta models)
    pub add_prefix_space: Option<bool>,
    /// Device to place the model on (default: CUDA/GPU when available)
    pub device: Device,
}

impl ZeroShotClassificationConfig {
    /// Instantiate a new zero shot classification configuration of the supplied type.
    ///
    /// # Arguments
    ///
    /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded!)
    /// * model - The `Resource` pointing to the model to load (e.g.  model.ot)
    /// * config - The `Resource' pointing to the model configuration to load (e.g. config.json)
    /// * vocab - The `Resource' pointing to the tokenizer's vocabulary to load (e.g.  vocab.txt/vocab.json)
    /// * vocab - An optional `Resource` tuple (`Option<Resource>`) pointing to the tokenizer's merge file to load (e.g.  merges.txt), needed only for Roberta.
    /// * lower_case - A `bool' indicating whether the tokenizer should lower case all input (in case of a lower-cased model)
    pub fn new(
        model_type: ModelType,
        model_resource: Resource,
        config_resource: Resource,
        vocab_resource: Resource,
        merges_resource: Option<Resource>,
        lower_case: bool,
        strip_accents: impl Into<Option<bool>>,
        add_prefix_space: impl Into<Option<bool>>,
    ) -> ZeroShotClassificationConfig {
        ZeroShotClassificationConfig {
            model_type,
            model_resource,
            config_resource,
            vocab_resource,
            merges_resource,
            lower_case,
            strip_accents: strip_accents.into(),
            add_prefix_space: add_prefix_space.into(),
            device: Device::cuda_if_available(),
        }
    }
}

impl Default for ZeroShotClassificationConfig {
    /// Provides a defaultSST-2 sentiment analysis model (English)
    fn default() -> ZeroShotClassificationConfig {
        ZeroShotClassificationConfig {
            model_type: ModelType::Bart,
            model_resource: Resource::Remote(RemoteResource::from_pretrained(
                BartModelResources::BART_MNLI,
            )),
            config_resource: Resource::Remote(RemoteResource::from_pretrained(
                BartConfigResources::BART_MNLI,
            )),
            vocab_resource: Resource::Remote(RemoteResource::from_pretrained(
                BartVocabResources::BART_MNLI,
            )),
            merges_resource: Some(Resource::Remote(RemoteResource::from_pretrained(
                BartMergesResources::BART_MNLI,
            ))),
            lower_case: false,
            strip_accents: None,
            add_prefix_space: None,
            device: Device::cuda_if_available(),
        }
    }
}

/// # Abstraction that holds one particular zero shot classification model, for any of the supported models
/// The models are using a classification architecture that should be trained on Natural Language Inference.
/// The models should output a Tensor of size > 2 in the label dimension, with the first logit corresponding
/// to contradiction and the last logit corresponding to entailment.
pub enum ZeroShotClassificationOption {
    /// Bart for Sequence Classification
    Bart(BartForSequenceClassification),
    /// Bert for Sequence Classification
    Bert(BertForSequenceClassification),
    /// DistilBert for Sequence Classification
    DistilBert(DistilBertModelClassifier),
    /// MobileBert for Sequence Classification
    MobileBert(MobileBertForSequenceClassification),
    /// Roberta for Sequence Classification
    Roberta(RobertaForSequenceClassification),
    /// XLMRoberta for Sequence Classification
    XLMRoberta(RobertaForSequenceClassification),
    /// Albert for Sequence Classification
    Albert(AlbertForSequenceClassification),
    /// XLNet for Sequence Classification
    XLNet(XLNetForSequenceClassification),
    /// Longformer for Sequence Classification
    Longformer(LongformerForSequenceClassification),
}

impl ZeroShotClassificationOption {
    /// Instantiate a new zero shot classification model of the supplied type.
    ///
    /// # Arguments
    ///
    /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded)
    /// * `p` - `tch::nn::Path` path to the model file to load (e.g. model.ot)
    /// * `config` - A configuration (the model type of the configuration must be compatible with the value for
    /// `model_type`)
    pub fn new<'p, P>(
        model_type: ModelType,
        p: P,
        config: &ConfigOption,
    ) -> Result<Self, RustBertError>
    where
        P: Borrow<nn::Path<'p>>,
    {
        match model_type {
            ModelType::Bart => {
                if let ConfigOption::Bart(config) = config {
                    Ok(ZeroShotClassificationOption::Bart(
                        BartForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a BartConfig for Bart!".to_string(),
                    ))
                }
            }
            ModelType::Bert => {
                if let ConfigOption::Bert(config) = config {
                    Ok(ZeroShotClassificationOption::Bert(
                        BertForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a BertConfig for Bert!".to_string(),
                    ))
                }
            }
            ModelType::DistilBert => {
                if let ConfigOption::DistilBert(config) = config {
                    Ok(ZeroShotClassificationOption::DistilBert(
                        DistilBertModelClassifier::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a DistilBertConfig for DistilBert!".to_string(),
                    ))
                }
            }
            ModelType::MobileBert => {
                if let ConfigOption::MobileBert(config) = config {
                    Ok(ZeroShotClassificationOption::MobileBert(
                        MobileBertForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a MobileBertConfig for MobileBert!".to_string(),
                    ))
                }
            }
            ModelType::Roberta => {
                if let ConfigOption::Bert(config) = config {
                    Ok(ZeroShotClassificationOption::Roberta(
                        RobertaForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a BertConfig for Roberta!".to_string(),
                    ))
                }
            }
            ModelType::XLMRoberta => {
                if let ConfigOption::Bert(config) = config {
                    Ok(ZeroShotClassificationOption::XLMRoberta(
                        RobertaForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a BertConfig for Roberta!".to_string(),
                    ))
                }
            }
            ModelType::Albert => {
                if let ConfigOption::Albert(config) = config {
                    Ok(ZeroShotClassificationOption::Albert(
                        AlbertForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply an AlbertConfig for Albert!".to_string(),
                    ))
                }
            }
            ModelType::XLNet => {
                if let ConfigOption::XLNet(config) = config {
                    Ok(ZeroShotClassificationOption::XLNet(
                        XLNetForSequenceClassification::new(p, config).unwrap(),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply an AlbertConfig for Albert!".to_string(),
                    ))
                }
            }
            ModelType::Longformer => {
                if let ConfigOption::Longformer(config) = config {
                    Ok(ZeroShotClassificationOption::Longformer(
                        LongformerForSequenceClassification::new(p, config),
                    ))
                } else {
                    Err(RustBertError::InvalidConfigurationError(
                        "You can only supply a LongformerConfig for Longformer!".to_string(),
                    ))
                }
            }
            _ => Err(RustBertError::InvalidConfigurationError(format!(
                "Zero shot classification not implemented for {:?}!",
                model_type
            ))),
        }
    }

    /// Returns the `ModelType` for this SequenceClassificationOption
    pub fn model_type(&self) -> ModelType {
        match *self {
            Self::Bart(_) => ModelType::Bart,
            Self::Bert(_) => ModelType::Bert,
            Self::Roberta(_) => ModelType::Roberta,
            Self::XLMRoberta(_) => ModelType::Roberta,
            Self::DistilBert(_) => ModelType::DistilBert,
            Self::MobileBert(_) => ModelType::MobileBert,
            Self::Albert(_) => ModelType::Albert,
            Self::XLNet(_) => ModelType::XLNet,
            Self::Longformer(_) => ModelType::Longformer,
        }
    }

    /// Interface method to forward_t() of the particular models.
    pub fn forward_t(
        &self,
        input_ids: Option<Tensor>,
        mask: Option<Tensor>,
        token_type_ids: Option<Tensor>,
        position_ids: Option<Tensor>,
        input_embeds: Option<Tensor>,
        train: bool,
    ) -> Tensor {
        match *self {
            Self::Bart(ref model) => {
                model
                    .forward_t(
                        &input_ids.expect("`input_ids` must be provided for BART models"),
                        mask.as_ref(),
                        None,
                        None,
                        None,
                        train,
                    )
                    .decoder_output
            }
            Self::Bert(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::DistilBert(ref model) => {
                model
                    .forward_t(input_ids, mask, input_embeds, train)
                    .expect("Error in distilbert forward_t")
                    .logits
            }
            Self::MobileBert(ref model) => {
                model
                    .forward_t(
                        input_ids.as_ref(),
                        None,
                        None,
                        input_embeds,
                        mask.as_ref(),
                        train,
                    )
                    .expect("Error in mobilebert forward_t")
                    .logits
            }
            Self::Roberta(ref model) | Self::XLMRoberta(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::Albert(ref model) => {
                model
                    .forward_t(
                        input_ids,
                        mask,
                        token_type_ids,
                        position_ids,
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::XLNet(ref model) => {
                model
                    .forward_t(
                        input_ids.as_ref(),
                        mask.as_ref(),
                        None,
                        None,
                        None,
                        token_type_ids.as_ref(),
                        input_embeds,
                        train,
                    )
                    .logits
            }
            Self::Longformer(ref model) => {
                model
                    .forward_t(
                        input_ids.as_ref(),
                        mask.as_ref(),
                        None,
                        token_type_ids.as_ref(),
                        position_ids.as_ref(),
                        input_embeds.as_ref(),
                        train,
                    )
                    .expect("Error in Longformer forward pass.")
                    .logits
            }
        }
    }
}

/// # ZeroShotClassificationModel for Zero Shot Classification
pub struct ZeroShotClassificationModel {
    tokenizer: TokenizerOption,
    zero_shot_classifier: ZeroShotClassificationOption,
    var_store: VarStore,
}

impl ZeroShotClassificationModel {
    /// Build a new `ZeroShotClassificationModel`
    ///
    /// # Arguments
    ///
    /// * `config` - `SequenceClassificationConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::sequence_classification::SequenceClassificationModel;
    ///
    /// let model = SequenceClassificationModel::new(Default::default())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(
        config: ZeroShotClassificationConfig,
    ) -> Result<ZeroShotClassificationModel, RustBertError> {
        let config_path = config.config_resource.get_local_path()?;
        let vocab_path = config.vocab_resource.get_local_path()?;
        let weights_path = config.model_resource.get_local_path()?;
        let merges_path = if let Some(merges_resource) = &config.merges_resource {
            Some(merges_resource.get_local_path()?)
        } else {
            None
        };
        let device = config.device;

        let tokenizer = TokenizerOption::from_file(
            config.model_type,
            vocab_path.to_str().unwrap(),
            merges_path.as_deref().map(|path| path.to_str().unwrap()),
            config.lower_case,
            config.strip_accents,
            config.add_prefix_space,
        )?;
        let mut var_store = VarStore::new(device);
        let model_config = ConfigOption::from_file(config.model_type, config_path);
        let zero_shot_classifier =
            ZeroShotClassificationOption::new(config.model_type, &var_store.root(), &model_config)?;
        var_store.load(weights_path)?;
        Ok(ZeroShotClassificationModel {
            tokenizer,
            zero_shot_classifier,
            var_store,
        })
    }

    fn prepare_for_model<'a, S, T>(
        &self,
        inputs: S,
        labels: T,
        template: Option<Box<dyn Fn(&str) -> String>>,
        max_len: usize,
    ) -> (Tensor, Tensor)
    where
        S: AsRef<[&'a str]>,
        T: AsRef<[&'a str]>,
    {
        let label_sentences: Vec<String> = match template {
            Some(function) => labels
                .as_ref()
                .iter()
                .map(|label| function(label))
                .collect(),
            None => labels
                .as_ref()
                .iter()
                .map(|label| format!("This example is about {}.", label))
                .collect(),
        };

        let text_pair_list = inputs
            .as_ref()
            .iter()
            .cartesian_product(label_sentences.iter())
            .map(|(&s, label)| (s, label.as_str()))
            .collect::<Vec<(&str, &str)>>();

        let tokenized_input: Vec<TokenizedInput> = self.tokenizer.encode_pair_list(
            text_pair_list.as_ref(),
            max_len,
            &TruncationStrategy::LongestFirst,
            0,
        );
        let max_len = tokenized_input
            .iter()
            .map(|input| input.token_ids.len())
            .max()
            .unwrap();
        let tokenized_input_tensors: Vec<tch::Tensor> =
            tokenized_input
                .iter()
                .map(|input| input.token_ids.clone())
                .map(|mut input| {
                    input.extend(vec![self.tokenizer.get_pad_id().expect(
                        "The Tokenizer used for zero shot classification should contain a PAD id"
                    ); max_len - input.len()]);
                    input
                })
                .map(|input| Tensor::of_slice(&(input)))
                .collect::<Vec<_>>();

        let tokenized_input_tensors =
            Tensor::stack(tokenized_input_tensors.as_slice(), 0).to(self.var_store.device());

        let mask = tokenized_input_tensors
            .ne(self
                .tokenizer
                .get_pad_id()
                .expect("The Tokenizer used for zero shot classification should contain a PAD id"))
            .to_kind(Bool);

        (tokenized_input_tensors, mask)
    }

    /// Zero shot classification with 1 (and exactly 1) true label.
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to classify.
    /// * `labels` - `&[&str]` Possible labels for the inputs.
    /// * `template` - `Option<Box<dyn Fn(&str) -> String>>` closure to build label propositions. If None, will default to `"This example is {}."`.
    /// * `max_length` -`usize` Maximum sequence length for the inputs. If needed, the input sequence will be truncated before the label template.
    ///
    /// # Returns
    ///
    /// * `Vec<Label>` containing with the most likely label for each input sentence.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel;
    ///
    /// let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?;
    ///
    /// let input_sentence = "Who are you voting for in 2020?";
    /// let input_sequence_2 = "The prime minister has announced a stimulus package which was widely criticized by the opposition.";
    /// let candidate_labels = &["politics", "public health", "economics", "sports"];
    ///
    /// let output = sequence_classification_model.predict(
    ///     &[input_sentence, input_sequence_2],
    ///     candidate_labels,
    ///     None,
    ///     128,
    /// );
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// outputs:
    /// ```no_run
    /// # use rust_bert::pipelines::sequence_classification::Label;
    /// let output = [
    ///     Label {
    ///         text: "politics".to_string(),
    ///         score: 0.959,
    ///         id: 0,
    ///         sentence: 0,
    ///     },
    ///     Label {
    ///         text: "economy".to_string(),
    ///         score: 0.642,
    ///         id: 2,
    ///         sentence: 1,
    ///     },
    /// ]
    /// .to_vec();
    /// ```
    pub fn predict<'a, S, T>(
        &self,
        inputs: S,
        labels: T,
        template: Option<Box<dyn Fn(&str) -> String>>,
        max_length: usize,
    ) -> Vec<Label>
    where
        S: AsRef<[&'a str]>,
        T: AsRef<[&'a str]>,
    {
        let num_inputs = inputs.as_ref().len();
        let (input_tensor, mask) =
            self.prepare_for_model(inputs.as_ref(), labels.as_ref(), template, max_length);
        let output = no_grad(|| {
            let output = self.zero_shot_classifier.forward_t(
                Some(input_tensor),
                Some(mask),
                None,
                None,
                None,
                false,
            );
            output.view((num_inputs as i64, labels.as_ref().len() as i64, -1i64))
        });

        let scores = output.softmax(1, Float).select(-1, -1);
        let label_indices = scores.as_ref().argmax(-1, true).squeeze1(1);
        let scores = scores
            .gather(1, &label_indices.unsqueeze(-1), false)
            .squeeze1(1);
        let label_indices = label_indices.iter::<i64>().unwrap().collect::<Vec<i64>>();
        let scores = scores.iter::<f64>().unwrap().collect::<Vec<f64>>();

        let mut output_labels: Vec<Label> = vec![];
        for sentence_idx in 0..label_indices.len() {
            let label_string = labels.as_ref()[label_indices[sentence_idx] as usize].to_string();
            let label = Label {
                text: label_string,
                score: scores[sentence_idx],
                id: label_indices[sentence_idx],
                sentence: sentence_idx,
            };
            output_labels.push(label)
        }
        output_labels
    }

    /// Zero shot multi-label classification with 0, 1 or no true label.
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to classify.
    /// * `labels` - `&[&str]` Possible labels for the inputs.
    /// * `template` - `Option<Box<dyn Fn(&str) -> String>>` closure to build label propositions. If None, will default to `"This example is about {}."`.
    /// * `max_length` -`usize` Maximum sequence length for the inputs. If needed, the input sequence will be truncated before the label template.
    ///
    /// # Returns
    ///
    /// * `Vec<Vec<Label>>` containing a vector of labels and their probability for each input text
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel;
    ///
    /// let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?;
    ///
    /// let input_sentence = "Who are you voting for in 2020?";
    /// let input_sequence_2 = "The central bank is meeting today to discuss monetary policy.";
    /// let candidate_labels = &["politics", "public health", "economics", "sports"];
    ///
    /// let output = sequence_classification_model.predict_multilabel(
    ///     &[input_sentence, input_sequence_2],
    ///     candidate_labels,
    ///     None,
    ///     128,
    /// );
    /// # Ok(())
    /// # }
    /// ```
    /// outputs:
    /// ```no_run
    /// # use rust_bert::pipelines::sequence_classification::Label;
    /// let output = [
    ///     [
    ///         Label {
    ///             text: "politics".to_string(),
    ///             score: 0.972,
    ///             id: 0,
    ///             sentence: 0,
    ///         },
    ///         Label {
    ///             text: "public health".to_string(),
    ///             score: 0.032,
    ///             id: 1,
    ///             sentence: 0,
    ///         },
    ///         Label {
    ///             text: "economy".to_string(),
    ///             score: 0.006,
    ///             id: 2,
    ///             sentence: 0,
    ///         },
    ///         Label {
    ///             text: "sports".to_string(),
    ///             score: 0.004,
    ///             id: 3,
    ///             sentence: 0,
    ///         },
    ///     ],
    ///     [
    ///         Label {
    ///             text: "politics".to_string(),
    ///             score: 0.975,
    ///             id: 0,
    ///             sentence: 1,
    ///         },
    ///         Label {
    ///             text: "economy".to_string(),
    ///             score: 0.852,
    ///             id: 2,
    ///             sentence: 1,
    ///         },
    ///         Label {
    ///             text: "public health".to_string(),
    ///             score: 0.0818,
    ///             id: 1,
    ///             sentence: 1,
    ///         },
    ///         Label {
    ///             text: "sports".to_string(),
    ///             score: 0.001,
    ///             id: 3,
    ///             sentence: 1,
    ///         },
    ///     ],
    /// ]
    /// .to_vec();
    /// ```
    pub fn predict_multilabel<'a, S, T>(
        &self,
        inputs: S,
        labels: T,
        template: Option<Box<dyn Fn(&str) -> String>>,
        max_length: usize,
    ) -> Vec<Vec<Label>>
    where
        S: AsRef<[&'a str]>,
        T: AsRef<[&'a str]>,
    {
        let num_inputs = inputs.as_ref().len();
        let (input_tensor, mask) =
            self.prepare_for_model(inputs.as_ref(), labels.as_ref(), template, max_length);
        let output = no_grad(|| {
            let output = self.zero_shot_classifier.forward_t(
                Some(input_tensor),
                Some(mask),
                None,
                None,
                None,
                false,
            );
            output.view((num_inputs as i64, labels.as_ref().len() as i64, -1i64))
        });
        let scores = output.slice(-1, 0, 3, 2).softmax(-1, Float).select(-1, -1);

        let mut output_labels = vec![];
        for sentence_idx in 0..num_inputs {
            let mut sentence_labels = vec![];

            for (label_index, score) in scores
                .select(0, sentence_idx as i64)
                .iter::<f64>()
                .unwrap()
                .enumerate()
            {
                let label_string = labels.as_ref()[label_index].to_string();
                let label = Label {
                    text: label_string,
                    score,
                    id: label_index as i64,
                    sentence: sentence_idx,
                };
                sentence_labels.push(label);
            }
            output_labels.push(sentence_labels);
        }
        output_labels
    }
}
#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[ignore] // no need to run, compilation is enough to verify it is Send
    fn test() {
        let config = ZeroShotClassificationConfig::default();
        let _: Box<dyn Send> = Box::new(ZeroShotClassificationModel::new(config));
    }
}