1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019-2020 Guillaume Becquin // Copyright 2020 Maarten van Gompel // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Zero-shot classification pipeline //! Performs zero-shot classification on input sentences with provided labels using a model fine-tuned for Natural Language Inference. //! The default model is a BART model fine-tuned on a MNLI. From a list of input sequences to classify and a list of target labels, //! single-class or multi-label classification is performed, translating the classification task to an inference task. //! The default template for translation to inference task is `This example is about {}.`. This template can be updated to a more specific //! value that may match better the use case, for example `This review is about a {product_class}`. //! //! - `predict` performs single-class classification (one and exactly one label must be true for each provided input) //! - `predict_multilabel` performs multi-label classification (zero, one or more labels may be true for each provided input) //! //! ```no_run //! # use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel; //! # fn main() -> anyhow::Result<()> { //! let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?; //! let input_sentence = "Who are you voting for in 2020?"; //! let input_sequence_2 = "The prime minister has announced a stimulus package which was widely criticized by the opposition."; //! let candidate_labels = &["politics", "public health", "economics", "sports"]; //! let output = sequence_classification_model.predict_multilabel( //! &[input_sentence, input_sequence_2], //! candidate_labels, //! None, //! 128, //! ); //! # Ok(()) //! # } //! ``` //! //! outputs: //! ```no_run //! # use rust_bert::pipelines::sequence_classification::Label; //! let output = [ //! [ //! Label { //! text: "politics".to_string(), //! score: 0.972, //! id: 0, //! sentence: 0, //! }, //! Label { //! text: "public health".to_string(), //! score: 0.032, //! id: 1, //! sentence: 0, //! }, //! Label { //! text: "economy".to_string(), //! score: 0.006, //! id: 2, //! sentence: 0, //! }, //! Label { //! text: "sports".to_string(), //! score: 0.004, //! id: 3, //! sentence: 0, //! }, //! ], //! [ //! Label { //! text: "politics".to_string(), //! score: 0.943, //! id: 0, //! sentence: 1, //! }, //! Label { //! text: "economy".to_string(), //! score: 0.985, //! id: 2, //! sentence: 1, //! }, //! Label { //! text: "public health".to_string(), //! score: 0.0818, //! id: 1, //! sentence: 1, //! }, //! Label { //! text: "sports".to_string(), //! score: 0.001, //! id: 3, //! sentence: 1, //! }, //! ], //! ] //! .to_vec(); //! ``` use crate::albert::AlbertForSequenceClassification; use crate::bart::{ BartConfigResources, BartForSequenceClassification, BartMergesResources, BartModelResources, BartVocabResources, }; use crate::bert::BertForSequenceClassification; use crate::distilbert::DistilBertModelClassifier; use crate::longformer::LongformerForSequenceClassification; use crate::mobilebert::MobileBertForSequenceClassification; use crate::pipelines::common::{ConfigOption, ModelType, TokenizerOption}; use crate::pipelines::sequence_classification::Label; use crate::resources::{RemoteResource, Resource}; use crate::roberta::RobertaForSequenceClassification; use crate::xlnet::XLNetForSequenceClassification; use crate::RustBertError; use itertools::Itertools; use rust_tokenizers::tokenizer::TruncationStrategy; use rust_tokenizers::TokenizedInput; use std::borrow::Borrow; use tch::kind::Kind::{Bool, Float}; use tch::nn::VarStore; use tch::{nn, no_grad, Device, Tensor}; /// # Configuration for ZeroShotClassificationModel /// Contains information regarding the model to load and device to place the model on. pub struct ZeroShotClassificationConfig { /// Model type pub model_type: ModelType, /// Model weights resource (default: pretrained BERT model on CoNLL) pub model_resource: Resource, /// Config resource (default: pretrained BERT model on CoNLL) pub config_resource: Resource, /// Vocab resource (default: pretrained BERT model on CoNLL) pub vocab_resource: Resource, /// Merges resource (default: None) pub merges_resource: Option<Resource>, /// Automatically lower case all input upon tokenization (assumes a lower-cased model) pub lower_case: bool, /// Flag indicating if the tokenizer should strip accents (normalization). Only used for BERT / ALBERT models pub strip_accents: Option<bool>, /// Flag indicating if the tokenizer should add a white space before each tokenized input (needed for some Roberta models) pub add_prefix_space: Option<bool>, /// Device to place the model on (default: CUDA/GPU when available) pub device: Device, } impl ZeroShotClassificationConfig { /// Instantiate a new zero shot classification configuration of the supplied type. /// /// # Arguments /// /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded!) /// * model - The `Resource` pointing to the model to load (e.g. model.ot) /// * config - The `Resource' pointing to the model configuration to load (e.g. config.json) /// * vocab - The `Resource' pointing to the tokenizer's vocabulary to load (e.g. vocab.txt/vocab.json) /// * vocab - An optional `Resource` tuple (`Option<Resource>`) pointing to the tokenizer's merge file to load (e.g. merges.txt), needed only for Roberta. /// * lower_case - A `bool' indicating whether the tokenizer should lower case all input (in case of a lower-cased model) pub fn new( model_type: ModelType, model_resource: Resource, config_resource: Resource, vocab_resource: Resource, merges_resource: Option<Resource>, lower_case: bool, strip_accents: impl Into<Option<bool>>, add_prefix_space: impl Into<Option<bool>>, ) -> ZeroShotClassificationConfig { ZeroShotClassificationConfig { model_type, model_resource, config_resource, vocab_resource, merges_resource, lower_case, strip_accents: strip_accents.into(), add_prefix_space: add_prefix_space.into(), device: Device::cuda_if_available(), } } } impl Default for ZeroShotClassificationConfig { /// Provides a defaultSST-2 sentiment analysis model (English) fn default() -> ZeroShotClassificationConfig { ZeroShotClassificationConfig { model_type: ModelType::Bart, model_resource: Resource::Remote(RemoteResource::from_pretrained( BartModelResources::BART_MNLI, )), config_resource: Resource::Remote(RemoteResource::from_pretrained( BartConfigResources::BART_MNLI, )), vocab_resource: Resource::Remote(RemoteResource::from_pretrained( BartVocabResources::BART_MNLI, )), merges_resource: Some(Resource::Remote(RemoteResource::from_pretrained( BartMergesResources::BART_MNLI, ))), lower_case: false, strip_accents: None, add_prefix_space: None, device: Device::cuda_if_available(), } } } /// # Abstraction that holds one particular zero shot classification model, for any of the supported models /// The models are using a classification architecture that should be trained on Natural Language Inference. /// The models should output a Tensor of size > 2 in the label dimension, with the first logit corresponding /// to contradiction and the last logit corresponding to entailment. pub enum ZeroShotClassificationOption { /// Bart for Sequence Classification Bart(BartForSequenceClassification), /// Bert for Sequence Classification Bert(BertForSequenceClassification), /// DistilBert for Sequence Classification DistilBert(DistilBertModelClassifier), /// MobileBert for Sequence Classification MobileBert(MobileBertForSequenceClassification), /// Roberta for Sequence Classification Roberta(RobertaForSequenceClassification), /// XLMRoberta for Sequence Classification XLMRoberta(RobertaForSequenceClassification), /// Albert for Sequence Classification Albert(AlbertForSequenceClassification), /// XLNet for Sequence Classification XLNet(XLNetForSequenceClassification), /// Longformer for Sequence Classification Longformer(LongformerForSequenceClassification), } impl ZeroShotClassificationOption { /// Instantiate a new zero shot classification model of the supplied type. /// /// # Arguments /// /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded) /// * `p` - `tch::nn::Path` path to the model file to load (e.g. model.ot) /// * `config` - A configuration (the model type of the configuration must be compatible with the value for /// `model_type`) pub fn new<'p, P>( model_type: ModelType, p: P, config: &ConfigOption, ) -> Result<Self, RustBertError> where P: Borrow<nn::Path<'p>>, { match model_type { ModelType::Bart => { if let ConfigOption::Bart(config) = config { Ok(ZeroShotClassificationOption::Bart( BartForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a BartConfig for Bart!".to_string(), )) } } ModelType::Bert => { if let ConfigOption::Bert(config) = config { Ok(ZeroShotClassificationOption::Bert( BertForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a BertConfig for Bert!".to_string(), )) } } ModelType::DistilBert => { if let ConfigOption::DistilBert(config) = config { Ok(ZeroShotClassificationOption::DistilBert( DistilBertModelClassifier::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a DistilBertConfig for DistilBert!".to_string(), )) } } ModelType::MobileBert => { if let ConfigOption::MobileBert(config) = config { Ok(ZeroShotClassificationOption::MobileBert( MobileBertForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a MobileBertConfig for MobileBert!".to_string(), )) } } ModelType::Roberta => { if let ConfigOption::Bert(config) = config { Ok(ZeroShotClassificationOption::Roberta( RobertaForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a BertConfig for Roberta!".to_string(), )) } } ModelType::XLMRoberta => { if let ConfigOption::Bert(config) = config { Ok(ZeroShotClassificationOption::XLMRoberta( RobertaForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a BertConfig for Roberta!".to_string(), )) } } ModelType::Albert => { if let ConfigOption::Albert(config) = config { Ok(ZeroShotClassificationOption::Albert( AlbertForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply an AlbertConfig for Albert!".to_string(), )) } } ModelType::XLNet => { if let ConfigOption::XLNet(config) = config { Ok(ZeroShotClassificationOption::XLNet( XLNetForSequenceClassification::new(p, config).unwrap(), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply an AlbertConfig for Albert!".to_string(), )) } } ModelType::Longformer => { if let ConfigOption::Longformer(config) = config { Ok(ZeroShotClassificationOption::Longformer( LongformerForSequenceClassification::new(p, config), )) } else { Err(RustBertError::InvalidConfigurationError( "You can only supply a LongformerConfig for Longformer!".to_string(), )) } } _ => Err(RustBertError::InvalidConfigurationError(format!( "Zero shot classification not implemented for {:?}!", model_type ))), } } /// Returns the `ModelType` for this SequenceClassificationOption pub fn model_type(&self) -> ModelType { match *self { Self::Bart(_) => ModelType::Bart, Self::Bert(_) => ModelType::Bert, Self::Roberta(_) => ModelType::Roberta, Self::XLMRoberta(_) => ModelType::Roberta, Self::DistilBert(_) => ModelType::DistilBert, Self::MobileBert(_) => ModelType::MobileBert, Self::Albert(_) => ModelType::Albert, Self::XLNet(_) => ModelType::XLNet, Self::Longformer(_) => ModelType::Longformer, } } /// Interface method to forward_t() of the particular models. pub fn forward_t( &self, input_ids: Option<Tensor>, mask: Option<Tensor>, token_type_ids: Option<Tensor>, position_ids: Option<Tensor>, input_embeds: Option<Tensor>, train: bool, ) -> Tensor { match *self { Self::Bart(ref model) => { model .forward_t( &input_ids.expect("`input_ids` must be provided for BART models"), mask.as_ref(), None, None, None, train, ) .decoder_output } Self::Bert(ref model) => { model .forward_t( input_ids, mask, token_type_ids, position_ids, input_embeds, train, ) .logits } Self::DistilBert(ref model) => { model .forward_t(input_ids, mask, input_embeds, train) .expect("Error in distilbert forward_t") .logits } Self::MobileBert(ref model) => { model .forward_t( input_ids.as_ref(), None, None, input_embeds, mask.as_ref(), train, ) .expect("Error in mobilebert forward_t") .logits } Self::Roberta(ref model) | Self::XLMRoberta(ref model) => { model .forward_t( input_ids, mask, token_type_ids, position_ids, input_embeds, train, ) .logits } Self::Albert(ref model) => { model .forward_t( input_ids, mask, token_type_ids, position_ids, input_embeds, train, ) .logits } Self::XLNet(ref model) => { model .forward_t( input_ids.as_ref(), mask.as_ref(), None, None, None, token_type_ids.as_ref(), input_embeds, train, ) .logits } Self::Longformer(ref model) => { model .forward_t( input_ids.as_ref(), mask.as_ref(), None, token_type_ids.as_ref(), position_ids.as_ref(), input_embeds.as_ref(), train, ) .expect("Error in Longformer forward pass.") .logits } } } } /// # ZeroShotClassificationModel for Zero Shot Classification pub struct ZeroShotClassificationModel { tokenizer: TokenizerOption, zero_shot_classifier: ZeroShotClassificationOption, var_store: VarStore, } impl ZeroShotClassificationModel { /// Build a new `ZeroShotClassificationModel` /// /// # Arguments /// /// * `config` - `SequenceClassificationConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::sequence_classification::SequenceClassificationModel; /// /// let model = SequenceClassificationModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new( config: ZeroShotClassificationConfig, ) -> Result<ZeroShotClassificationModel, RustBertError> { let config_path = config.config_resource.get_local_path()?; let vocab_path = config.vocab_resource.get_local_path()?; let weights_path = config.model_resource.get_local_path()?; let merges_path = if let Some(merges_resource) = &config.merges_resource { Some(merges_resource.get_local_path()?) } else { None }; let device = config.device; let tokenizer = TokenizerOption::from_file( config.model_type, vocab_path.to_str().unwrap(), merges_path.as_deref().map(|path| path.to_str().unwrap()), config.lower_case, config.strip_accents, config.add_prefix_space, )?; let mut var_store = VarStore::new(device); let model_config = ConfigOption::from_file(config.model_type, config_path); let zero_shot_classifier = ZeroShotClassificationOption::new(config.model_type, &var_store.root(), &model_config)?; var_store.load(weights_path)?; Ok(ZeroShotClassificationModel { tokenizer, zero_shot_classifier, var_store, }) } fn prepare_for_model<'a, S, T>( &self, inputs: S, labels: T, template: Option<Box<dyn Fn(&str) -> String>>, max_len: usize, ) -> (Tensor, Tensor) where S: AsRef<[&'a str]>, T: AsRef<[&'a str]>, { let label_sentences: Vec<String> = match template { Some(function) => labels .as_ref() .iter() .map(|label| function(label)) .collect(), None => labels .as_ref() .iter() .map(|label| format!("This example is about {}.", label)) .collect(), }; let text_pair_list = inputs .as_ref() .iter() .cartesian_product(label_sentences.iter()) .map(|(&s, label)| (s, label.as_str())) .collect::<Vec<(&str, &str)>>(); let tokenized_input: Vec<TokenizedInput> = self.tokenizer.encode_pair_list( text_pair_list.as_ref(), max_len, &TruncationStrategy::LongestFirst, 0, ); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let tokenized_input_tensors: Vec<tch::Tensor> = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![self.tokenizer.get_pad_id().expect( "The Tokenizer used for zero shot classification should contain a PAD id" ); max_len - input.len()]); input }) .map(|input| Tensor::of_slice(&(input))) .collect::<Vec<_>>(); let tokenized_input_tensors = Tensor::stack(tokenized_input_tensors.as_slice(), 0).to(self.var_store.device()); let mask = tokenized_input_tensors .ne(self .tokenizer .get_pad_id() .expect("The Tokenizer used for zero shot classification should contain a PAD id")) .to_kind(Bool); (tokenized_input_tensors, mask) } /// Zero shot classification with 1 (and exactly 1) true label. /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to classify. /// * `labels` - `&[&str]` Possible labels for the inputs. /// * `template` - `Option<Box<dyn Fn(&str) -> String>>` closure to build label propositions. If None, will default to `"This example is {}."`. /// * `max_length` -`usize` Maximum sequence length for the inputs. If needed, the input sequence will be truncated before the label template. /// /// # Returns /// /// * `Vec<Label>` containing with the most likely label for each input sentence. /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel; /// /// let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?; /// /// let input_sentence = "Who are you voting for in 2020?"; /// let input_sequence_2 = "The prime minister has announced a stimulus package which was widely criticized by the opposition."; /// let candidate_labels = &["politics", "public health", "economics", "sports"]; /// /// let output = sequence_classification_model.predict( /// &[input_sentence, input_sequence_2], /// candidate_labels, /// None, /// 128, /// ); /// # Ok(()) /// # } /// ``` /// /// outputs: /// ```no_run /// # use rust_bert::pipelines::sequence_classification::Label; /// let output = [ /// Label { /// text: "politics".to_string(), /// score: 0.959, /// id: 0, /// sentence: 0, /// }, /// Label { /// text: "economy".to_string(), /// score: 0.642, /// id: 2, /// sentence: 1, /// }, /// ] /// .to_vec(); /// ``` pub fn predict<'a, S, T>( &self, inputs: S, labels: T, template: Option<Box<dyn Fn(&str) -> String>>, max_length: usize, ) -> Vec<Label> where S: AsRef<[&'a str]>, T: AsRef<[&'a str]>, { let num_inputs = inputs.as_ref().len(); let (input_tensor, mask) = self.prepare_for_model(inputs.as_ref(), labels.as_ref(), template, max_length); let output = no_grad(|| { let output = self.zero_shot_classifier.forward_t( Some(input_tensor), Some(mask), None, None, None, false, ); output.view((num_inputs as i64, labels.as_ref().len() as i64, -1i64)) }); let scores = output.softmax(1, Float).select(-1, -1); let label_indices = scores.as_ref().argmax(-1, true).squeeze1(1); let scores = scores .gather(1, &label_indices.unsqueeze(-1), false) .squeeze1(1); let label_indices = label_indices.iter::<i64>().unwrap().collect::<Vec<i64>>(); let scores = scores.iter::<f64>().unwrap().collect::<Vec<f64>>(); let mut output_labels: Vec<Label> = vec![]; for sentence_idx in 0..label_indices.len() { let label_string = labels.as_ref()[label_indices[sentence_idx] as usize].to_string(); let label = Label { text: label_string, score: scores[sentence_idx], id: label_indices[sentence_idx], sentence: sentence_idx, }; output_labels.push(label) } output_labels } /// Zero shot multi-label classification with 0, 1 or no true label. /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to classify. /// * `labels` - `&[&str]` Possible labels for the inputs. /// * `template` - `Option<Box<dyn Fn(&str) -> String>>` closure to build label propositions. If None, will default to `"This example is about {}."`. /// * `max_length` -`usize` Maximum sequence length for the inputs. If needed, the input sequence will be truncated before the label template. /// /// # Returns /// /// * `Vec<Vec<Label>>` containing a vector of labels and their probability for each input text /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel; /// /// let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?; /// /// let input_sentence = "Who are you voting for in 2020?"; /// let input_sequence_2 = "The central bank is meeting today to discuss monetary policy."; /// let candidate_labels = &["politics", "public health", "economics", "sports"]; /// /// let output = sequence_classification_model.predict_multilabel( /// &[input_sentence, input_sequence_2], /// candidate_labels, /// None, /// 128, /// ); /// # Ok(()) /// # } /// ``` /// outputs: /// ```no_run /// # use rust_bert::pipelines::sequence_classification::Label; /// let output = [ /// [ /// Label { /// text: "politics".to_string(), /// score: 0.972, /// id: 0, /// sentence: 0, /// }, /// Label { /// text: "public health".to_string(), /// score: 0.032, /// id: 1, /// sentence: 0, /// }, /// Label { /// text: "economy".to_string(), /// score: 0.006, /// id: 2, /// sentence: 0, /// }, /// Label { /// text: "sports".to_string(), /// score: 0.004, /// id: 3, /// sentence: 0, /// }, /// ], /// [ /// Label { /// text: "politics".to_string(), /// score: 0.975, /// id: 0, /// sentence: 1, /// }, /// Label { /// text: "economy".to_string(), /// score: 0.852, /// id: 2, /// sentence: 1, /// }, /// Label { /// text: "public health".to_string(), /// score: 0.0818, /// id: 1, /// sentence: 1, /// }, /// Label { /// text: "sports".to_string(), /// score: 0.001, /// id: 3, /// sentence: 1, /// }, /// ], /// ] /// .to_vec(); /// ``` pub fn predict_multilabel<'a, S, T>( &self, inputs: S, labels: T, template: Option<Box<dyn Fn(&str) -> String>>, max_length: usize, ) -> Vec<Vec<Label>> where S: AsRef<[&'a str]>, T: AsRef<[&'a str]>, { let num_inputs = inputs.as_ref().len(); let (input_tensor, mask) = self.prepare_for_model(inputs.as_ref(), labels.as_ref(), template, max_length); let output = no_grad(|| { let output = self.zero_shot_classifier.forward_t( Some(input_tensor), Some(mask), None, None, None, false, ); output.view((num_inputs as i64, labels.as_ref().len() as i64, -1i64)) }); let scores = output.slice(-1, 0, 3, 2).softmax(-1, Float).select(-1, -1); let mut output_labels = vec![]; for sentence_idx in 0..num_inputs { let mut sentence_labels = vec![]; for (label_index, score) in scores .select(0, sentence_idx as i64) .iter::<f64>() .unwrap() .enumerate() { let label_string = labels.as_ref()[label_index].to_string(); let label = Label { text: label_string, score, id: label_index as i64, sentence: sentence_idx, }; sentence_labels.push(label); } output_labels.push(sentence_labels); } output_labels } } #[cfg(test)] mod test { use super::*; #[test] #[ignore] // no need to run, compilation is enough to verify it is Send fn test() { let config = ZeroShotClassificationConfig::default(); let _: Box<dyn Send> = Box::new(ZeroShotClassificationModel::new(config)); } }