pub struct Camera { /* private fields */ }
Implementations§
Source§impl Camera
impl Camera
pub fn new( gl: Gl, pos: Point3<f32>, yaw: Rad<f32>, pitch: Rad<f32>, fov: Deg<f32>, ) -> Self
pub fn render( &self, vao: &Vao<'_>, model_matrix: &Matrix4<f32>, width: u32, height: u32, phong_info: &PhongRenderingInfo<'_>, block_atlas_texture: &ImageLoadInfo<'_>, )
pub fn view_matrix(&self) -> Matrix4<f32>
pub fn projection_matrix(&self, width: u32, height: u32) -> Matrix4<f32>
pub fn set_pos(&mut self, pos: Point3<f32>)
pub fn move_pos(&mut self, d: Vector3<f32>)
pub fn set_yaw(&mut self, yaw: Rad<f32>)
pub fn add_yaw(&mut self, yaw_d: Rad<f32>)
pub fn set_pitch(&mut self, pitch: Rad<f32>)
pub fn add_pitch(&mut self, pitch_d: Rad<f32>)
pub fn set_fov(&mut self, fov: Deg<f32>)
pub const fn pos(&self) -> Point3<f32>
pub const fn yaw(&self) -> Rad<f32>
pub const fn pitch(&self) -> Rad<f32>
pub const fn fov(&self) -> Deg<f32>
Trait Implementations§
Auto Trait Implementations§
impl Freeze for Camera
impl RefUnwindSafe for Camera
impl !Send for Camera
impl !Sync for Camera
impl Unpin for Camera
impl UnwindSafe for Camera
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.