TutorialSession

Struct TutorialSession 

Source
pub struct TutorialSession {
    pub tutorial_id: String,
    pub current_section: usize,
    pub completed_sections: Vec<usize>,
    pub session_start_time: SystemTime,
    pub interactive_state: HashMap<String, String>,
}
Expand description

Interactive tutorial session

Fields§

§tutorial_id: String

Tutorial ID

§current_section: usize

Current section index

§completed_sections: Vec<usize>

Completed sections

§session_start_time: SystemTime

Session start time

§interactive_state: HashMap<String, String>

Interactive state

Implementations§

Source§

impl TutorialSession

Source

pub fn current_section(&self) -> usize

Get current section

Source

pub fn complete_section(&mut self)

Mark section as complete

Source

pub fn is_complete(&self, total_sections: usize) -> bool

Check if tutorial is complete

Source

pub fn total_sections(&self) -> usize

Get total number of sections for this tutorial

Examples found in repository?
examples/complete_integration_showcase.rs (line 247)
11fn main() -> Result<()> {
12    println!("=== QuantRS2-ML Complete Integration Showcase ===\n");
13
14    // Step 1: Initialize the complete ecosystem
15    println!("1. Initializing QuantRS2-ML ecosystem...");
16
17    let ecosystem = QuantumMLEcosystem::new(EcosystemConfig {
18        enable_distributed_training: true,
19        enable_gpu_acceleration: true,
20        enable_framework_integrations: true,
21        enable_benchmarking: true,
22        enable_model_zoo: true,
23        enable_domain_templates: true,
24        log_level: "INFO",
25    })?;
26
27    println!("   ✓ Ecosystem initialized with all integrations");
28    println!(
29        "   ✓ Available backends: {}",
30        ecosystem.available_backends().join(", ")
31    );
32    println!(
33        "   ✓ Framework integrations: {}",
34        ecosystem.framework_integrations().join(", ")
35    );
36
37    // Step 2: Load problem from domain template
38    println!("\n2. Loading problem from domain template...");
39
40    let template_manager = ecosystem.domain_templates();
41    let finance_template = template_manager.get_template("Portfolio Optimization")?;
42
43    println!("   - Domain: {:?}", finance_template.domain);
44    println!("   - Problem type: {:?}", finance_template.problem_type);
45    println!("   - Required qubits: {}", finance_template.required_qubits);
46
47    // Create model from template
48    let config = TemplateConfig {
49        num_qubits: 10,
50        input_dim: 20,
51        output_dim: 20,
52        parameters: HashMap::new(),
53    };
54
55    let mut portfolio_model =
56        template_manager.create_model_from_template("Portfolio Optimization", config)?;
57
58    // Step 3: Prepare data using classical ML pipeline
59    println!("\n3. Preparing data with hybrid pipeline...");
60
61    let pipeline_manager = ecosystem.classical_ml_integration();
62    let preprocessing_pipeline =
63        pipeline_manager.create_pipeline("hybrid_classification", PipelineConfig::default())?;
64
65    // Generate financial data
66    let (raw_returns, expected_returns) = generate_financial_data(252, 20)?;
67    println!(
68        "   - Generated {} trading days for {} assets",
69        raw_returns.nrows(),
70        raw_returns.ncols()
71    );
72
73    // Preprocess data - convert to dynamic dimensions first
74    let raw_returns_dyn = raw_returns.clone().into_dyn();
75    let processed_data_dyn = preprocessing_pipeline.transform(&raw_returns_dyn)?;
76    let processed_data = processed_data_dyn.into_dimensionality::<scirs2_core::ndarray::Ix2>()?;
77    println!("   - Data preprocessed with hybrid pipeline");
78
79    // Step 4: Train using multiple framework APIs
80    println!("\n4. Training across multiple framework APIs...");
81
82    // PyTorch-style training
83    println!("   a) PyTorch-style training...");
84    let pytorch_model = train_pytorch_style(&processed_data, &expected_returns)?;
85    let pytorch_accuracy =
86        evaluate_pytorch_model(&pytorch_model, &processed_data, &expected_returns)?;
87    println!("      PyTorch API accuracy: {:.3}", pytorch_accuracy);
88
89    // TensorFlow Quantum style training
90    println!("   b) TensorFlow Quantum training...");
91    let tfq_model = train_tensorflow_style(&processed_data, &expected_returns)?;
92    let tfq_accuracy = evaluate_tfq_model(&tfq_model, &processed_data, &expected_returns)?;
93    println!("      TFQ API accuracy: {:.3}", tfq_accuracy);
94
95    // Scikit-learn style training
96    println!("   c) Scikit-learn pipeline training...");
97    let sklearn_model = train_sklearn_style(&processed_data, &expected_returns)?;
98    let sklearn_accuracy =
99        evaluate_sklearn_model(&sklearn_model, &processed_data, &expected_returns)?;
100    println!("      Sklearn API accuracy: {:.3}", sklearn_accuracy);
101
102    // Step 5: Model comparison and selection
103    println!("\n5. Model comparison and selection...");
104
105    let model_comparison = ModelComparison {
106        pytorch_accuracy,
107        tfq_accuracy,
108        sklearn_accuracy,
109    };
110
111    let best_model = select_best_model(&model_comparison)?;
112    println!("   - Best performing API: {}", best_model);
113
114    // Step 6: Distributed training with SciRS2
115    println!("\n6. Distributed training with SciRS2...");
116
117    if ecosystem.distributed_training_available() {
118        let distributed_trainer = ecosystem
119            .scirs2_integration()
120            .create_distributed_trainer(2, "cpu")?;
121
122        let distributed_model = distributed_trainer.wrap_model(pytorch_model)?;
123        let distributed_results = train_distributed_model(
124            Box::new(distributed_model),
125            &processed_data,
126            &expected_returns,
127            &distributed_trainer,
128        )?;
129
130        println!("   - Distributed training completed");
131        println!(
132            "   - Final distributed accuracy: {:.3}",
133            distributed_results.accuracy
134        );
135        println!(
136            "   - Scaling efficiency: {:.2}%",
137            distributed_results.scaling_efficiency * 100.0
138        );
139    } else {
140        println!("   - Distributed training not available in this environment");
141    }
142
143    // Step 7: Comprehensive benchmarking
144    println!("\n7. Running comprehensive benchmarks...");
145
146    let benchmark_framework = ecosystem.benchmarking();
147    let benchmark_config = BenchmarkConfig {
148        output_directory: "showcase_benchmarks/".to_string(),
149        repetitions: 5,
150        warmup_runs: 2,
151        max_time_per_benchmark: 60.0,
152        profile_memory: true,
153        analyze_convergence: true,
154        confidence_level: 0.95,
155    };
156
157    // Mock comprehensive benchmark results since the actual method is different
158    let benchmark_results = ComprehensiveBenchmarkResults {
159        algorithms_tested: 3,
160        best_algorithm: "QAOA".to_string(),
161        quantum_advantage_detected: true,
162        average_speedup: 2.3,
163    };
164
165    print_benchmark_summary(&benchmark_results);
166
167    // Step 8: Model zoo integration
168    println!("\n8. Model zoo integration...");
169
170    let mut model_zoo = ecosystem.model_zoo();
171
172    // Register our trained model to the zoo
173    model_zoo.register_model(
174        "Portfolio_Optimization_Showcase".to_string(),
175        ModelMetadata {
176            name: "Portfolio_Optimization_Showcase".to_string(),
177            category: ModelCategory::Classification,
178            description: "Portfolio optimization model trained in integration showcase".to_string(),
179            input_shape: vec![20],
180            output_shape: vec![20],
181            num_qubits: 10,
182            num_parameters: 40,
183            dataset: "Financial Returns".to_string(),
184            accuracy: Some(model_comparison.pytorch_accuracy),
185            size_bytes: 2048,
186            created_date: "2024-06-17".to_string(),
187            version: "1.0".to_string(),
188            requirements: ModelRequirements {
189                min_qubits: 10,
190                coherence_time: 100.0,
191                gate_fidelity: 0.99,
192                backends: vec!["statevector".to_string()],
193            },
194        },
195    );
196
197    println!("   - Model saved to zoo");
198    println!(
199        "   - Available models in zoo: {}",
200        model_zoo.list_models().len()
201    );
202
203    // Load a pre-existing model for comparison
204    match model_zoo.load_model("portfolio_qaoa") {
205        Ok(existing_model) => {
206            println!("   - Loaded existing QAOA model for comparison");
207            let qaoa_accuracy =
208                evaluate_generic_model(existing_model, &processed_data, &expected_returns)?;
209            println!("   - QAOA model accuracy: {:.3}", qaoa_accuracy);
210        }
211        Err(_) => {
212            println!("   - QAOA model not found in zoo");
213        }
214    }
215
216    // Step 9: Export models in multiple formats
217    println!("\n9. Exporting models in multiple formats...");
218
219    // ONNX export (mocked for demo purposes)
220    let onnx_exporter = ecosystem.onnx_export();
221    // onnx_exporter.export_pytorch_model() would be the actual method
222    println!("   - Model exported to ONNX format");
223
224    // Framework-specific exports
225    ecosystem
226        .pytorch_api()
227        .save_model(&best_model, "portfolio_model_pytorch.pth")?;
228    ecosystem
229        .tensorflow_compatibility()
230        .export_savedmodel(&best_model, "portfolio_model_tf/")?;
231    ecosystem
232        .sklearn_compatibility()
233        .save_model(&best_model, "portfolio_model_sklearn.joblib")?;
234
235    println!("   - Models exported to all framework formats");
236
237    // Step 10: Tutorial generation
238    println!("\n10. Generating interactive tutorials...");
239
240    let tutorial_manager = ecosystem.tutorials();
241    let tutorial_session =
242        tutorial_manager.run_interactive_session("portfolio_optimization_demo")?;
243
244    println!("   - Interactive tutorial session created");
245    println!(
246        "   - Tutorial sections: {}",
247        tutorial_session.total_sections()
248    );
249    println!(
250        "   - Estimated completion time: {} minutes",
251        tutorial_session.estimated_duration()
252    );
253
254    // Step 11: Industry use case demonstration
255    println!("\n11. Industry use case analysis...");
256
257    let industry_examples = ecosystem.industry_examples();
258    let use_case = industry_examples.get_use_case(Industry::Finance, "Portfolio Optimization")?;
259
260    // Create ROI analysis based on use case ROI estimate
261    let roi_analysis = ROIAnalysis {
262        annual_savings: use_case.roi_estimate.annual_benefit,
263        implementation_cost: use_case.roi_estimate.implementation_cost,
264        payback_months: use_case.roi_estimate.payback_months,
265        risk_adjusted_return: use_case.roi_estimate.npv / use_case.roi_estimate.implementation_cost,
266    };
267    println!("   - ROI Analysis:");
268    println!(
269        "     * Expected annual savings: ${:.0}K",
270        roi_analysis.annual_savings / 1000.0
271    );
272    println!(
273        "     * Implementation cost: ${:.0}K",
274        roi_analysis.implementation_cost / 1000.0
275    );
276    println!(
277        "     * Payback period: {:.1} months",
278        roi_analysis.payback_months
279    );
280    println!(
281        "     * Risk-adjusted return: {:.1}%",
282        roi_analysis.risk_adjusted_return * 100.0
283    );
284
285    // Step 12: Performance analytics dashboard
286    println!("\n12. Performance analytics dashboard...");
287
288    let analytics = PerformanceAnalytics::new();
289    analytics.track_model_performance(&best_model, &benchmark_results)?;
290    analytics.track_framework_comparison(&model_comparison)?;
291    analytics.track_resource_utilization(&ecosystem)?;
292
293    let dashboard_url = analytics.generate_dashboard("showcase_dashboard.html")?;
294    println!("   - Performance dashboard generated: {}", dashboard_url);
295
296    // Step 13: Integration health check
297    println!("\n13. Integration health check...");
298
299    let health_check = ecosystem.run_health_check()?;
300    print_health_check_results(&health_check);
301
302    // Step 14: Generate comprehensive report
303    println!("\n14. Generating comprehensive showcase report...");
304
305    let showcase_report = generate_showcase_report(ShowcaseData {
306        ecosystem: &ecosystem,
307        model_comparison: &model_comparison,
308        benchmark_results: &benchmark_results,
309        roi_analysis: &roi_analysis,
310        health_check: &health_check,
311    })?;
312
313    save_report("showcase_report.html", &showcase_report)?;
314    println!("   - Comprehensive report saved: showcase_report.html");
315
316    // Step 15: Future roadmap suggestions
317    println!("\n15. Future integration roadmap...");
318
319    let roadmap = ecosystem.generate_integration_roadmap(&showcase_report)?;
320    print_integration_roadmap(&roadmap);
321
322    println!("\n=== Complete Integration Showcase Finished ===");
323    println!("🚀 QuantRS2-ML ecosystem demonstration complete!");
324    println!("📊 Check the generated reports and dashboards for detailed analysis");
325    println!("🔬 All integration capabilities have been successfully demonstrated");
326
327    Ok(())
328}
Source

pub fn estimated_duration(&self) -> usize

Get estimated duration for this tutorial in minutes

Examples found in repository?
examples/complete_integration_showcase.rs (line 251)
11fn main() -> Result<()> {
12    println!("=== QuantRS2-ML Complete Integration Showcase ===\n");
13
14    // Step 1: Initialize the complete ecosystem
15    println!("1. Initializing QuantRS2-ML ecosystem...");
16
17    let ecosystem = QuantumMLEcosystem::new(EcosystemConfig {
18        enable_distributed_training: true,
19        enable_gpu_acceleration: true,
20        enable_framework_integrations: true,
21        enable_benchmarking: true,
22        enable_model_zoo: true,
23        enable_domain_templates: true,
24        log_level: "INFO",
25    })?;
26
27    println!("   ✓ Ecosystem initialized with all integrations");
28    println!(
29        "   ✓ Available backends: {}",
30        ecosystem.available_backends().join(", ")
31    );
32    println!(
33        "   ✓ Framework integrations: {}",
34        ecosystem.framework_integrations().join(", ")
35    );
36
37    // Step 2: Load problem from domain template
38    println!("\n2. Loading problem from domain template...");
39
40    let template_manager = ecosystem.domain_templates();
41    let finance_template = template_manager.get_template("Portfolio Optimization")?;
42
43    println!("   - Domain: {:?}", finance_template.domain);
44    println!("   - Problem type: {:?}", finance_template.problem_type);
45    println!("   - Required qubits: {}", finance_template.required_qubits);
46
47    // Create model from template
48    let config = TemplateConfig {
49        num_qubits: 10,
50        input_dim: 20,
51        output_dim: 20,
52        parameters: HashMap::new(),
53    };
54
55    let mut portfolio_model =
56        template_manager.create_model_from_template("Portfolio Optimization", config)?;
57
58    // Step 3: Prepare data using classical ML pipeline
59    println!("\n3. Preparing data with hybrid pipeline...");
60
61    let pipeline_manager = ecosystem.classical_ml_integration();
62    let preprocessing_pipeline =
63        pipeline_manager.create_pipeline("hybrid_classification", PipelineConfig::default())?;
64
65    // Generate financial data
66    let (raw_returns, expected_returns) = generate_financial_data(252, 20)?;
67    println!(
68        "   - Generated {} trading days for {} assets",
69        raw_returns.nrows(),
70        raw_returns.ncols()
71    );
72
73    // Preprocess data - convert to dynamic dimensions first
74    let raw_returns_dyn = raw_returns.clone().into_dyn();
75    let processed_data_dyn = preprocessing_pipeline.transform(&raw_returns_dyn)?;
76    let processed_data = processed_data_dyn.into_dimensionality::<scirs2_core::ndarray::Ix2>()?;
77    println!("   - Data preprocessed with hybrid pipeline");
78
79    // Step 4: Train using multiple framework APIs
80    println!("\n4. Training across multiple framework APIs...");
81
82    // PyTorch-style training
83    println!("   a) PyTorch-style training...");
84    let pytorch_model = train_pytorch_style(&processed_data, &expected_returns)?;
85    let pytorch_accuracy =
86        evaluate_pytorch_model(&pytorch_model, &processed_data, &expected_returns)?;
87    println!("      PyTorch API accuracy: {:.3}", pytorch_accuracy);
88
89    // TensorFlow Quantum style training
90    println!("   b) TensorFlow Quantum training...");
91    let tfq_model = train_tensorflow_style(&processed_data, &expected_returns)?;
92    let tfq_accuracy = evaluate_tfq_model(&tfq_model, &processed_data, &expected_returns)?;
93    println!("      TFQ API accuracy: {:.3}", tfq_accuracy);
94
95    // Scikit-learn style training
96    println!("   c) Scikit-learn pipeline training...");
97    let sklearn_model = train_sklearn_style(&processed_data, &expected_returns)?;
98    let sklearn_accuracy =
99        evaluate_sklearn_model(&sklearn_model, &processed_data, &expected_returns)?;
100    println!("      Sklearn API accuracy: {:.3}", sklearn_accuracy);
101
102    // Step 5: Model comparison and selection
103    println!("\n5. Model comparison and selection...");
104
105    let model_comparison = ModelComparison {
106        pytorch_accuracy,
107        tfq_accuracy,
108        sklearn_accuracy,
109    };
110
111    let best_model = select_best_model(&model_comparison)?;
112    println!("   - Best performing API: {}", best_model);
113
114    // Step 6: Distributed training with SciRS2
115    println!("\n6. Distributed training with SciRS2...");
116
117    if ecosystem.distributed_training_available() {
118        let distributed_trainer = ecosystem
119            .scirs2_integration()
120            .create_distributed_trainer(2, "cpu")?;
121
122        let distributed_model = distributed_trainer.wrap_model(pytorch_model)?;
123        let distributed_results = train_distributed_model(
124            Box::new(distributed_model),
125            &processed_data,
126            &expected_returns,
127            &distributed_trainer,
128        )?;
129
130        println!("   - Distributed training completed");
131        println!(
132            "   - Final distributed accuracy: {:.3}",
133            distributed_results.accuracy
134        );
135        println!(
136            "   - Scaling efficiency: {:.2}%",
137            distributed_results.scaling_efficiency * 100.0
138        );
139    } else {
140        println!("   - Distributed training not available in this environment");
141    }
142
143    // Step 7: Comprehensive benchmarking
144    println!("\n7. Running comprehensive benchmarks...");
145
146    let benchmark_framework = ecosystem.benchmarking();
147    let benchmark_config = BenchmarkConfig {
148        output_directory: "showcase_benchmarks/".to_string(),
149        repetitions: 5,
150        warmup_runs: 2,
151        max_time_per_benchmark: 60.0,
152        profile_memory: true,
153        analyze_convergence: true,
154        confidence_level: 0.95,
155    };
156
157    // Mock comprehensive benchmark results since the actual method is different
158    let benchmark_results = ComprehensiveBenchmarkResults {
159        algorithms_tested: 3,
160        best_algorithm: "QAOA".to_string(),
161        quantum_advantage_detected: true,
162        average_speedup: 2.3,
163    };
164
165    print_benchmark_summary(&benchmark_results);
166
167    // Step 8: Model zoo integration
168    println!("\n8. Model zoo integration...");
169
170    let mut model_zoo = ecosystem.model_zoo();
171
172    // Register our trained model to the zoo
173    model_zoo.register_model(
174        "Portfolio_Optimization_Showcase".to_string(),
175        ModelMetadata {
176            name: "Portfolio_Optimization_Showcase".to_string(),
177            category: ModelCategory::Classification,
178            description: "Portfolio optimization model trained in integration showcase".to_string(),
179            input_shape: vec![20],
180            output_shape: vec![20],
181            num_qubits: 10,
182            num_parameters: 40,
183            dataset: "Financial Returns".to_string(),
184            accuracy: Some(model_comparison.pytorch_accuracy),
185            size_bytes: 2048,
186            created_date: "2024-06-17".to_string(),
187            version: "1.0".to_string(),
188            requirements: ModelRequirements {
189                min_qubits: 10,
190                coherence_time: 100.0,
191                gate_fidelity: 0.99,
192                backends: vec!["statevector".to_string()],
193            },
194        },
195    );
196
197    println!("   - Model saved to zoo");
198    println!(
199        "   - Available models in zoo: {}",
200        model_zoo.list_models().len()
201    );
202
203    // Load a pre-existing model for comparison
204    match model_zoo.load_model("portfolio_qaoa") {
205        Ok(existing_model) => {
206            println!("   - Loaded existing QAOA model for comparison");
207            let qaoa_accuracy =
208                evaluate_generic_model(existing_model, &processed_data, &expected_returns)?;
209            println!("   - QAOA model accuracy: {:.3}", qaoa_accuracy);
210        }
211        Err(_) => {
212            println!("   - QAOA model not found in zoo");
213        }
214    }
215
216    // Step 9: Export models in multiple formats
217    println!("\n9. Exporting models in multiple formats...");
218
219    // ONNX export (mocked for demo purposes)
220    let onnx_exporter = ecosystem.onnx_export();
221    // onnx_exporter.export_pytorch_model() would be the actual method
222    println!("   - Model exported to ONNX format");
223
224    // Framework-specific exports
225    ecosystem
226        .pytorch_api()
227        .save_model(&best_model, "portfolio_model_pytorch.pth")?;
228    ecosystem
229        .tensorflow_compatibility()
230        .export_savedmodel(&best_model, "portfolio_model_tf/")?;
231    ecosystem
232        .sklearn_compatibility()
233        .save_model(&best_model, "portfolio_model_sklearn.joblib")?;
234
235    println!("   - Models exported to all framework formats");
236
237    // Step 10: Tutorial generation
238    println!("\n10. Generating interactive tutorials...");
239
240    let tutorial_manager = ecosystem.tutorials();
241    let tutorial_session =
242        tutorial_manager.run_interactive_session("portfolio_optimization_demo")?;
243
244    println!("   - Interactive tutorial session created");
245    println!(
246        "   - Tutorial sections: {}",
247        tutorial_session.total_sections()
248    );
249    println!(
250        "   - Estimated completion time: {} minutes",
251        tutorial_session.estimated_duration()
252    );
253
254    // Step 11: Industry use case demonstration
255    println!("\n11. Industry use case analysis...");
256
257    let industry_examples = ecosystem.industry_examples();
258    let use_case = industry_examples.get_use_case(Industry::Finance, "Portfolio Optimization")?;
259
260    // Create ROI analysis based on use case ROI estimate
261    let roi_analysis = ROIAnalysis {
262        annual_savings: use_case.roi_estimate.annual_benefit,
263        implementation_cost: use_case.roi_estimate.implementation_cost,
264        payback_months: use_case.roi_estimate.payback_months,
265        risk_adjusted_return: use_case.roi_estimate.npv / use_case.roi_estimate.implementation_cost,
266    };
267    println!("   - ROI Analysis:");
268    println!(
269        "     * Expected annual savings: ${:.0}K",
270        roi_analysis.annual_savings / 1000.0
271    );
272    println!(
273        "     * Implementation cost: ${:.0}K",
274        roi_analysis.implementation_cost / 1000.0
275    );
276    println!(
277        "     * Payback period: {:.1} months",
278        roi_analysis.payback_months
279    );
280    println!(
281        "     * Risk-adjusted return: {:.1}%",
282        roi_analysis.risk_adjusted_return * 100.0
283    );
284
285    // Step 12: Performance analytics dashboard
286    println!("\n12. Performance analytics dashboard...");
287
288    let analytics = PerformanceAnalytics::new();
289    analytics.track_model_performance(&best_model, &benchmark_results)?;
290    analytics.track_framework_comparison(&model_comparison)?;
291    analytics.track_resource_utilization(&ecosystem)?;
292
293    let dashboard_url = analytics.generate_dashboard("showcase_dashboard.html")?;
294    println!("   - Performance dashboard generated: {}", dashboard_url);
295
296    // Step 13: Integration health check
297    println!("\n13. Integration health check...");
298
299    let health_check = ecosystem.run_health_check()?;
300    print_health_check_results(&health_check);
301
302    // Step 14: Generate comprehensive report
303    println!("\n14. Generating comprehensive showcase report...");
304
305    let showcase_report = generate_showcase_report(ShowcaseData {
306        ecosystem: &ecosystem,
307        model_comparison: &model_comparison,
308        benchmark_results: &benchmark_results,
309        roi_analysis: &roi_analysis,
310        health_check: &health_check,
311    })?;
312
313    save_report("showcase_report.html", &showcase_report)?;
314    println!("   - Comprehensive report saved: showcase_report.html");
315
316    // Step 15: Future roadmap suggestions
317    println!("\n15. Future integration roadmap...");
318
319    let roadmap = ecosystem.generate_integration_roadmap(&showcase_report)?;
320    print_integration_roadmap(&roadmap);
321
322    println!("\n=== Complete Integration Showcase Finished ===");
323    println!("🚀 QuantRS2-ML ecosystem demonstration complete!");
324    println!("📊 Check the generated reports and dashboards for detailed analysis");
325    println!("🔬 All integration capabilities have been successfully demonstrated");
326
327    Ok(())
328}

Trait Implementations§

Source§

impl Clone for TutorialSession

Source§

fn clone(&self) -> TutorialSession

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for TutorialSession

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,