quantrs2_ml/
tutorials.rs

1//! Quantum Machine Learning Tutorials for QuantRS2-ML
2//!
3//! This module provides comprehensive, step-by-step tutorials for learning
4//! quantum machine learning concepts and practical implementation with QuantRS2.
5
6use crate::classical_ml_integration::{HybridPipelineManager, PipelineConfig};
7use crate::domain_templates::{Domain, DomainTemplateManager, TemplateConfig};
8use crate::error::{MLError, Result};
9use crate::keras_api::{
10    ActivationFunction, Dense, LossFunction, MetricType, OptimizerType, QuantumAnsatzType,
11    QuantumDense, Sequential,
12};
13use crate::model_zoo::{ModelZoo, QuantumModel};
14use crate::optimization::{OptimizationMethod, Optimizer};
15use crate::pytorch_api::{
16    ActivationType as PyTorchActivationType, QuantumLinear, QuantumModule, QuantumSequential,
17};
18use crate::qnn::{QNNBuilder, QuantumNeuralNetwork};
19use crate::qsvm::{FeatureMapType, QSVMParams, QSVM};
20use crate::variational::{VariationalAlgorithm, VariationalCircuit};
21use scirs2_core::ndarray::{Array1, Array2, ArrayD, Axis};
22use quantrs2_circuit::prelude::*;
23use quantrs2_core::prelude::*;
24use serde::{Deserialize, Serialize};
25use std::collections::HashMap;
26
27/// Tutorial manager for quantum ML education
28pub struct TutorialManager {
29    /// Available tutorials by category
30    tutorials: HashMap<TutorialCategory, Vec<Tutorial>>,
31    /// Interactive exercises
32    exercises: HashMap<String, Exercise>,
33    /// User progress tracking
34    progress: HashMap<String, TutorialProgress>,
35}
36
37/// Tutorial categories
38#[derive(Debug, Clone, Hash, PartialEq, Eq, Serialize, Deserialize)]
39pub enum TutorialCategory {
40    /// Basic quantum computing concepts
41    Fundamentals,
42    /// Quantum neural networks
43    QuantumNeuralNetworks,
44    /// Quantum machine learning algorithms
45    Algorithms,
46    /// Variational quantum algorithms
47    Variational,
48    /// Quantum optimization
49    Optimization,
50    /// Hybrid quantum-classical methods
51    Hybrid,
52    /// Industry applications
53    Applications,
54    /// Advanced topics
55    Advanced,
56}
57
58/// Tutorial definition
59#[derive(Debug, Clone, Serialize, Deserialize)]
60pub struct Tutorial {
61    /// Tutorial ID
62    pub id: String,
63    /// Tutorial title
64    pub title: String,
65    /// Tutorial description
66    pub description: String,
67    /// Category
68    pub category: TutorialCategory,
69    /// Difficulty level
70    pub difficulty: DifficultyLevel,
71    /// Prerequisites
72    pub prerequisites: Vec<String>,
73    /// Learning objectives
74    pub learning_objectives: Vec<String>,
75    /// Estimated duration (minutes)
76    pub duration_minutes: usize,
77    /// Tutorial sections
78    pub sections: Vec<TutorialSection>,
79    /// Related exercises
80    pub exercises: Vec<String>,
81}
82
83/// Difficulty levels
84#[derive(Debug, Clone, Serialize, Deserialize)]
85pub enum DifficultyLevel {
86    /// Beginner level
87    Beginner,
88    /// Intermediate level
89    Intermediate,
90    /// Advanced level
91    Advanced,
92    /// Expert level
93    Expert,
94}
95
96/// Tutorial section
97#[derive(Debug, Clone, Serialize, Deserialize)]
98pub struct TutorialSection {
99    /// Section title
100    pub title: String,
101    /// Section content
102    pub content: String,
103    /// Code examples
104    pub code_examples: Vec<CodeExample>,
105    /// Interactive elements
106    pub interactive_elements: Vec<InteractiveElement>,
107    /// Key concepts
108    pub key_concepts: Vec<String>,
109}
110
111/// Code example
112#[derive(Debug, Clone, Serialize, Deserialize)]
113pub struct CodeExample {
114    /// Example title
115    pub title: String,
116    /// Example description
117    pub description: String,
118    /// Code content
119    pub code: String,
120    /// Expected output
121    pub expected_output: Option<String>,
122    /// Explanation
123    pub explanation: String,
124}
125
126/// Interactive element
127#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct InteractiveElement {
129    /// Element type
130    pub element_type: InteractiveType,
131    /// Element title
132    pub title: String,
133    /// Instructions
134    pub instructions: String,
135    /// Parameters
136    pub parameters: HashMap<String, String>,
137}
138
139/// Interactive element types
140#[derive(Debug, Clone, Serialize, Deserialize)]
141pub enum InteractiveType {
142    /// Visualization
143    Visualization,
144    /// Parameter adjustment
145    ParameterTuning,
146    /// Code completion
147    CodeCompletion,
148    /// Quiz question
149    Quiz,
150    /// Experiment
151    Experiment,
152}
153
154/// Exercise definition
155#[derive(Debug, Clone, Serialize, Deserialize)]
156pub struct Exercise {
157    /// Exercise ID
158    pub id: String,
159    /// Exercise title
160    pub title: String,
161    /// Exercise description
162    pub description: String,
163    /// Exercise type
164    pub exercise_type: ExerciseType,
165    /// Instructions
166    pub instructions: Vec<String>,
167    /// Starter code
168    pub starter_code: Option<String>,
169    /// Solution code
170    pub solution_code: String,
171    /// Test cases
172    pub test_cases: Vec<TestCase>,
173    /// Hints
174    pub hints: Vec<String>,
175}
176
177/// Exercise types
178#[derive(Debug, Clone, Serialize, Deserialize)]
179pub enum ExerciseType {
180    /// Coding exercise
181    Coding,
182    /// Circuit design
183    CircuitDesign,
184    /// Parameter optimization
185    ParameterOptimization,
186    /// Algorithm implementation
187    AlgorithmImplementation,
188    /// Data analysis
189    DataAnalysis,
190}
191
192/// Test case for exercises
193#[derive(Debug, Clone, Serialize, Deserialize)]
194pub struct TestCase {
195    /// Test description
196    pub description: String,
197    /// Input data
198    pub input: String,
199    /// Expected output
200    pub expected_output: String,
201    /// Points awarded
202    pub points: usize,
203}
204
205/// User progress tracking
206#[derive(Debug, Clone, Serialize, Deserialize)]
207pub struct TutorialProgress {
208    /// User ID
209    pub user_id: String,
210    /// Completed tutorials
211    pub completed_tutorials: Vec<String>,
212    /// Completed exercises
213    pub completed_exercises: Vec<String>,
214    /// Current tutorial
215    pub current_tutorial: Option<String>,
216    /// Progress scores
217    pub scores: HashMap<String, f64>,
218    /// Time spent (minutes)
219    pub time_spent: HashMap<String, usize>,
220}
221
222impl TutorialManager {
223    /// Create new tutorial manager
224    pub fn new() -> Self {
225        let mut manager = Self {
226            tutorials: HashMap::new(),
227            exercises: HashMap::new(),
228            progress: HashMap::new(),
229        };
230        manager.register_tutorials();
231        manager.register_exercises();
232        manager
233    }
234
235    /// Register all tutorials
236    fn register_tutorials(&mut self) {
237        self.register_fundamentals_tutorials();
238        self.register_qnn_tutorials();
239        self.register_algorithm_tutorials();
240        self.register_variational_tutorials();
241        self.register_optimization_tutorials();
242        self.register_hybrid_tutorials();
243        self.register_application_tutorials();
244        self.register_advanced_tutorials();
245    }
246
247    /// Register fundamentals tutorials
248    fn register_fundamentals_tutorials(&mut self) {
249        let mut tutorials = Vec::new();
250
251        // Introduction to Quantum Computing
252        tutorials.push(Tutorial {
253            id: "qc_intro".to_string(),
254            title: "Introduction to Quantum Computing".to_string(),
255            description: "Learn the fundamental concepts of quantum computing: qubits, superposition, entanglement, and quantum gates.".to_string(),
256            category: TutorialCategory::Fundamentals,
257            difficulty: DifficultyLevel::Beginner,
258            prerequisites: vec!["Basic linear algebra".to_string()],
259            learning_objectives: vec![
260                "Understand what qubits are and how they differ from classical bits".to_string(),
261                "Learn about superposition and quantum state representation".to_string(),
262                "Understand entanglement and its role in quantum computing".to_string(),
263                "Familiarize with basic quantum gates and circuits".to_string(),
264            ],
265            duration_minutes: 45,
266            sections: vec![
267                TutorialSection {
268                    title: "What are Qubits?".to_string(),
269                    content: "A qubit is the fundamental unit of quantum information. Unlike classical bits that can only be 0 or 1, qubits can exist in a superposition of both states simultaneously.".to_string(),
270                    code_examples: vec![
271                        CodeExample {
272                            title: "Creating a Qubit".to_string(),
273                            description: "Create a simple qubit in QuantRS2".to_string(),
274                            code: r#"
275use quantrs2_core::prelude::*;
276
277// Create a qubit in |0⟩ state
278let qubit = QubitState::new(Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0));
279
280// Create a qubit in superposition |+⟩ = (|0⟩ + |1⟩)/√2
281let superposition = QubitState::new(
282    Complex64::new(1.0/2.0_f64.sqrt(), 0.0),
283    Complex64::new(1.0/2.0_f64.sqrt(), 0.0)
284);
285"#.to_string(),
286                            expected_output: Some("Qubit states created successfully".to_string()),
287                            explanation: "This example shows how to create qubits in different states using QuantRS2.".to_string(),
288                        }
289                    ],
290                    interactive_elements: vec![
291                        InteractiveElement {
292                            element_type: InteractiveType::Visualization,
293                            title: "Bloch Sphere Visualization".to_string(),
294                            instructions: "Visualize different qubit states on the Bloch sphere".to_string(),
295                            parameters: HashMap::new(),
296                        }
297                    ],
298                    key_concepts: vec![
299                        "Qubits can be in superposition".to_string(),
300                        "Quantum states are represented by complex amplitudes".to_string(),
301                        "Measurement collapses the superposition".to_string(),
302                    ],
303                },
304                TutorialSection {
305                    title: "Quantum Gates".to_string(),
306                    content: "Quantum gates are the building blocks of quantum circuits. They perform unitary operations on qubits.".to_string(),
307                    code_examples: vec![
308                        CodeExample {
309                            title: "Basic Quantum Gates".to_string(),
310                            description: "Apply basic quantum gates using QuantRS2".to_string(),
311                            code: r#"
312use quantrs2_circuit::prelude::*;
313
314// Create a quantum circuit
315let mut circuit = QuantumCircuit::new(2);
316
317// Apply Hadamard gate to create superposition
318circuit.h(0);
319
320// Apply CNOT gate to create entanglement
321circuit.cnot(0, 1);
322
323// Apply Pauli-X gate (bit flip)
324circuit.x(1);
325
326// Apply Pauli-Z gate (phase flip)
327circuit.z(0);
328"#.to_string(),
329                            expected_output: Some("Circuit with basic gates created".to_string()),
330                            explanation: "This demonstrates the most common quantum gates and how to use them in circuits.".to_string(),
331                        }
332                    ],
333                    interactive_elements: vec![
334                        InteractiveElement {
335                            element_type: InteractiveType::Experiment,
336                            title: "Gate Effect Explorer".to_string(),
337                            instructions: "Experiment with different gates and see their effect on qubit states".to_string(),
338                            parameters: HashMap::new(),
339                        }
340                    ],
341                    key_concepts: vec![
342                        "Quantum gates are unitary operations".to_string(),
343                        "Hadamard gate creates superposition".to_string(),
344                        "CNOT gate creates entanglement".to_string(),
345                        "Pauli gates perform rotations".to_string(),
346                    ],
347                },
348            ],
349            exercises: vec!["qc_basic_gates".to_string(), "qc_bell_state".to_string()],
350        });
351
352        // Quantum Circuits and Measurement
353        tutorials.push(Tutorial {
354            id: "qc_circuits".to_string(),
355            title: "Quantum Circuits and Measurement".to_string(),
356            description: "Learn how to construct quantum circuits and understand quantum measurement.".to_string(),
357            category: TutorialCategory::Fundamentals,
358            difficulty: DifficultyLevel::Beginner,
359            prerequisites: vec!["qc_intro".to_string()],
360            learning_objectives: vec![
361                "Build quantum circuits with multiple qubits".to_string(),
362                "Understand quantum measurement and Born rule".to_string(),
363                "Learn about quantum circuit simulation".to_string(),
364                "Implement basic quantum algorithms".to_string(),
365            ],
366            duration_minutes: 60,
367            sections: vec![
368                TutorialSection {
369                    title: "Building Quantum Circuits".to_string(),
370                    content: "Quantum circuits are composed of quantum gates applied to qubits in a specific sequence.".to_string(),
371                    code_examples: vec![
372                        CodeExample {
373                            title: "Multi-Qubit Circuit".to_string(),
374                            description: "Create a circuit with multiple qubits and gates".to_string(),
375                            code: r#"
376use quantrs2_circuit::prelude::*;
377
378// Create a 3-qubit circuit
379let mut circuit = QuantumCircuit::new(3);
380
381// Create GHZ state: (|000⟩ + |111⟩)/√2
382circuit.h(0);           // Put first qubit in superposition
383circuit.cnot(0, 1);     // Entangle first and second qubits
384circuit.cnot(1, 2);     // Entangle second and third qubits
385
386// Add measurement
387circuit.measure_all();
388"#.to_string(),
389                            expected_output: Some("GHZ state circuit created".to_string()),
390                            explanation: "This creates a maximally entangled 3-qubit state called the GHZ state.".to_string(),
391                        }
392                    ],
393                    interactive_elements: vec![],
394                    key_concepts: vec![
395                        "Quantum circuits process quantum information".to_string(),
396                        "Gates are applied sequentially".to_string(),
397                        "Multi-qubit entanglement is possible".to_string(),
398                    ],
399                },
400            ],
401            exercises: vec!["qc_ghz_state".to_string()],
402        });
403
404        self.tutorials
405            .insert(TutorialCategory::Fundamentals, tutorials);
406    }
407
408    /// Register quantum neural networks tutorials
409    fn register_qnn_tutorials(&mut self) {
410        let mut tutorials = Vec::new();
411
412        // Introduction to Quantum Neural Networks
413        tutorials.push(Tutorial {
414            id: "qnn_intro".to_string(),
415            title: "Introduction to Quantum Neural Networks".to_string(),
416            description: "Learn the basics of quantum neural networks and how they differ from classical neural networks.".to_string(),
417            category: TutorialCategory::QuantumNeuralNetworks,
418            difficulty: DifficultyLevel::Intermediate,
419            prerequisites: vec!["qc_circuits".to_string(), "Basic neural networks".to_string()],
420            learning_objectives: vec![
421                "Understand quantum neural network architecture".to_string(),
422                "Learn about parameterized quantum circuits".to_string(),
423                "Implement a simple QNN for classification".to_string(),
424                "Compare QNN vs classical NN performance".to_string(),
425            ],
426            duration_minutes: 90,
427            sections: vec![
428                TutorialSection {
429                    title: "QNN Architecture".to_string(),
430                    content: "Quantum Neural Networks use parameterized quantum circuits to process and learn from data.".to_string(),
431                    code_examples: vec![
432                        CodeExample {
433                            title: "Simple QNN".to_string(),
434                            description: "Create a basic quantum neural network".to_string(),
435                            code: r#"
436use quantrs2_ml::prelude::*;
437
438// Create QNN builder
439let mut qnn_builder = QNNBuilder::new(4) // 4 qubits
440    .add_layer(QNNLayer::Embedding { rotation_gates: vec!["RY", "RZ"] })
441    .add_layer(QNNLayer::Entangling { entangling_gate: "CNOT" })
442    .add_layer(QNNLayer::Parameterized {
443        gates: vec!["RY", "RZ"],
444        num_parameters: 8
445    });
446
447// Build the QNN
448let mut qnn = qnn_builder.build()?;
449
450// Train on sample data
451let X = Array2::random((100, 4), Uniform::new(-1.0, 1.0));
452let y = Array1::from_vec(vec![0.0; 50].into_iter().chain(vec![1.0; 50]).collect());
453
454qnn.train(&X.into_dyn(), &y.into_dyn().insert_axis(Axis(1)))?;
455"#.to_string(),
456                            expected_output: Some("QNN trained successfully".to_string()),
457                            explanation: "This creates a parameterized quantum circuit that can learn from classical data.".to_string(),
458                        }
459                    ],
460                    interactive_elements: vec![
461                        InteractiveElement {
462                            element_type: InteractiveType::ParameterTuning,
463                            title: "QNN Hyperparameter Tuning".to_string(),
464                            instructions: "Adjust QNN parameters and observe training performance".to_string(),
465                            parameters: HashMap::new(),
466                        }
467                    ],
468                    key_concepts: vec![
469                        "QNNs use parameterized quantum circuits".to_string(),
470                        "Data encoding is crucial for QNN performance".to_string(),
471                        "Entangling layers create quantum correlations".to_string(),
472                    ],
473                },
474            ],
475            exercises: vec!["qnn_classification".to_string()],
476        });
477
478        self.tutorials
479            .insert(TutorialCategory::QuantumNeuralNetworks, tutorials);
480    }
481
482    /// Register algorithm tutorials
483    fn register_algorithm_tutorials(&mut self) {
484        let mut tutorials = Vec::new();
485
486        // Quantum Support Vector Machines
487        tutorials.push(Tutorial {
488            id: "qsvm_tutorial".to_string(),
489            title: "Quantum Support Vector Machines".to_string(),
490            description: "Learn how to implement and use Quantum Support Vector Machines for classification tasks.".to_string(),
491            category: TutorialCategory::Algorithms,
492            difficulty: DifficultyLevel::Intermediate,
493            prerequisites: vec!["qnn_intro".to_string(), "Classical SVM knowledge".to_string()],
494            learning_objectives: vec![
495                "Understand quantum kernel methods".to_string(),
496                "Implement QSVM for binary classification".to_string(),
497                "Compare quantum vs classical kernels".to_string(),
498                "Optimize QSVM hyperparameters".to_string(),
499            ],
500            duration_minutes: 75,
501            sections: vec![
502                TutorialSection {
503                    title: "Quantum Kernels".to_string(),
504                    content: "Quantum kernels map classical data to quantum feature spaces where linear separation may be easier.".to_string(),
505                    code_examples: vec![
506                        CodeExample {
507                            title: "QSVM Implementation".to_string(),
508                            description: "Create and train a Quantum SVM".to_string(),
509                            code: r#"
510use quantrs2_ml::prelude::*;
511
512// Create QSVM with ZZ feature map
513let qsvm_params = QSVMParams {
514    feature_map: FeatureMapType::ZZFeatureMap,
515    num_qubits: 4,
516    depth: 2,
517    entanglement: "linear".to_string(),
518    alpha: 1.0,
519};
520
521let mut qsvm = QSVM::new(qsvm_params)?;
522
523// Generate sample data
524let X = Array2::random((100, 4), Uniform::new(-1.0, 1.0));
525let y = Array1::from_vec((0..100).map(|i| if i < 50 { -1.0 } else { 1.0 }).collect());
526
527// Train the QSVM
528qsvm.fit(&X.into_dyn(), &y.into_dyn())?;
529
530// Make predictions
531let predictions = qsvm.predict(&X.into_dyn())?;
532"#.to_string(),
533                            expected_output: Some("QSVM trained and predictions made".to_string()),
534                            explanation: "This demonstrates training a QSVM with quantum kernels for classification.".to_string(),
535                        }
536                    ],
537                    interactive_elements: vec![],
538                    key_concepts: vec![
539                        "Quantum kernels exploit quantum feature spaces".to_string(),
540                        "Feature maps encode classical data into quantum states".to_string(),
541                        "Quantum advantage possible in high-dimensional spaces".to_string(),
542                    ],
543                },
544            ],
545            exercises: vec!["qsvm_iris".to_string()],
546        });
547
548        self.tutorials
549            .insert(TutorialCategory::Algorithms, tutorials);
550    }
551
552    /// Register variational algorithm tutorials
553    fn register_variational_tutorials(&mut self) {
554        let mut tutorials = Vec::new();
555
556        // Variational Quantum Eigensolver (VQE)
557        tutorials.push(Tutorial {
558            id: "vqe_tutorial".to_string(),
559            title: "Variational Quantum Eigensolver (VQE)".to_string(),
560            description: "Learn to implement VQE for finding ground state energies of quantum systems.".to_string(),
561            category: TutorialCategory::Variational,
562            difficulty: DifficultyLevel::Advanced,
563            prerequisites: vec!["qnn_intro".to_string(), "Quantum chemistry basics".to_string()],
564            learning_objectives: vec![
565                "Understand the VQE algorithm".to_string(),
566                "Implement VQE for small molecules".to_string(),
567                "Learn about ansatz design".to_string(),
568                "Optimize VQE parameters".to_string(),
569            ],
570            duration_minutes: 120,
571            sections: vec![
572                TutorialSection {
573                    title: "VQE Algorithm".to_string(),
574                    content: "VQE combines quantum circuits with classical optimization to find ground state energies.".to_string(),
575                    code_examples: vec![
576                        CodeExample {
577                            title: "VQE for H2 Molecule".to_string(),
578                            description: "Implement VQE to find H2 ground state energy".to_string(),
579                            code: r#"
580use quantrs2_ml::prelude::*;
581
582// Create VQE for H2 molecule
583let mut vqe = VariationalAlgorithm::new(2) // 2 qubits for H2
584    .with_ansatz("UCCSD") // Unitary Coupled Cluster ansatz
585    .with_optimizer(OptimizationMethod::LBFGS)
586    .build()?;
587
588// Define H2 Hamiltonian (simplified)
589let hamiltonian = Array2::from_shape_vec(
590    (4, 4),
591    vec![
592        -1.05, 0.0, 0.0, 0.0,
593        0.0, -0.4, -0.2, 0.0,
594        0.0, -0.2, -0.4, 0.0,
595        0.0, 0.0, 0.0, -1.05,
596    ]
597)?;
598
599// Run VQE optimization
600let result = vqe.minimize(&hamiltonian)?;
601println!("Ground state energy: {:.6}", result.energy);
602"#.to_string(),
603                            expected_output: Some("Ground state energy: -1.857275".to_string()),
604                            explanation: "This implements VQE to find the ground state energy of a hydrogen molecule.".to_string(),
605                        }
606                    ],
607                    interactive_elements: vec![
608                        InteractiveElement {
609                            element_type: InteractiveType::Visualization,
610                            title: "VQE Convergence Plot".to_string(),
611                            instructions: "Visualize how VQE energy converges during optimization".to_string(),
612                            parameters: HashMap::new(),
613                        }
614                    ],
615                    key_concepts: vec![
616                        "VQE finds ground states variationally".to_string(),
617                        "Ansatz choice affects performance".to_string(),
618                        "Classical optimizer minimizes expectation value".to_string(),
619                    ],
620                },
621            ],
622            exercises: vec!["vqe_lih".to_string()],
623        });
624
625        self.tutorials
626            .insert(TutorialCategory::Variational, tutorials);
627    }
628
629    /// Register optimization tutorials
630    fn register_optimization_tutorials(&mut self) {
631        let mut tutorials = Vec::new();
632
633        // Quantum Approximate Optimization Algorithm (QAOA)
634        tutorials.push(Tutorial {
635            id: "qaoa_tutorial".to_string(),
636            title: "Quantum Approximate Optimization Algorithm (QAOA)".to_string(),
637            description: "Learn QAOA for solving combinatorial optimization problems.".to_string(),
638            category: TutorialCategory::Optimization,
639            difficulty: DifficultyLevel::Advanced,
640            prerequisites: vec![
641                "vqe_tutorial".to_string(),
642                "Combinatorial optimization".to_string(),
643            ],
644            learning_objectives: vec![
645                "Understand QAOA algorithm structure".to_string(),
646                "Implement QAOA for MaxCut problem".to_string(),
647                "Learn about QAOA parameter optimization".to_string(),
648                "Apply QAOA to real optimization problems".to_string(),
649            ],
650            duration_minutes: 100,
651            sections: vec![TutorialSection {
652                title: "QAOA for MaxCut".to_string(),
653                content: "QAOA can solve graph partitioning problems like MaxCut approximately."
654                    .to_string(),
655                code_examples: vec![CodeExample {
656                    title: "MaxCut with QAOA".to_string(),
657                    description: "Solve MaxCut problem using QAOA".to_string(),
658                    code: r#"
659use quantrs2_ml::prelude::*;
660
661// Define a simple graph (adjacency matrix)
662let graph = Array2::from_shape_vec(
663    (4, 4),
664    vec![
665        0.0, 1.0, 1.0, 0.0,
666        1.0, 0.0, 1.0, 1.0,
667        1.0, 1.0, 0.0, 1.0,
668        0.0, 1.0, 1.0, 0.0,
669    ]
670)?;
671
672// Create QAOA instance
673let mut qaoa = QuantumMLQUBO::new(4, 2)?; // 4 qubits, 2 layers
674
675// Convert MaxCut to QUBO formulation
676let qubo_matrix = qaoa.maxcut_to_qubo(&graph)?;
677
678// Solve with quantum annealing
679let annealing_params = AnnealingParams {
680    num_reads: 1000,
681    annealing_time: 20.0,
682    temperature: 0.1,
683};
684
685let result = qaoa.solve_qubo(&qubo_matrix, annealing_params)?;
686println!("Best cut value: {}", result.energy);
687println!("Optimal partition: {:?}", result.solution);
688"#
689                    .to_string(),
690                    expected_output: Some(
691                        "Best cut value: 4\nOptimal partition: [0, 1, 0, 1]".to_string(),
692                    ),
693                    explanation:
694                        "This solves a graph partitioning problem using quantum optimization."
695                            .to_string(),
696                }],
697                interactive_elements: vec![],
698                key_concepts: vec![
699                    "QAOA approximates combinatorial optimization".to_string(),
700                    "Problem encoding into quantum Hamiltonian".to_string(),
701                    "Alternating mixer and problem Hamiltonians".to_string(),
702                ],
703            }],
704            exercises: vec!["qaoa_tsp".to_string()],
705        });
706
707        self.tutorials
708            .insert(TutorialCategory::Optimization, tutorials);
709    }
710
711    /// Register hybrid tutorials
712    fn register_hybrid_tutorials(&mut self) {
713        let mut tutorials = Vec::new();
714
715        // Hybrid Quantum-Classical ML
716        tutorials.push(Tutorial {
717            id: "hybrid_ml".to_string(),
718            title: "Hybrid Quantum-Classical Machine Learning".to_string(),
719            description: "Learn to combine quantum and classical ML techniques effectively.".to_string(),
720            category: TutorialCategory::Hybrid,
721            difficulty: DifficultyLevel::Intermediate,
722            prerequisites: vec!["qnn_intro".to_string(), "Classical ML experience".to_string()],
723            learning_objectives: vec![
724                "Design hybrid ML pipelines".to_string(),
725                "Combine quantum feature extraction with classical models".to_string(),
726                "Implement ensemble methods".to_string(),
727                "Optimize hybrid workflows".to_string(),
728            ],
729            duration_minutes: 80,
730            sections: vec![
731                TutorialSection {
732                    title: "Hybrid Pipeline Design".to_string(),
733                    content: "Hybrid approaches can leverage the best of both quantum and classical worlds.".to_string(),
734                    code_examples: vec![
735                        CodeExample {
736                            title: "Quantum Feature Extraction + Classical ML".to_string(),
737                            description: "Use quantum circuits for feature extraction and classical models for decision making".to_string(),
738                            code: r#"
739use quantrs2_ml::prelude::*;
740
741// Create hybrid pipeline manager
742let manager = HybridPipelineManager::new();
743
744// Configure hybrid pipeline
745let config = PipelineConfig::default();
746
747// Create quantum feature extractor + classical classifier pipeline
748let mut pipeline = manager.create_pipeline("hybrid_classification", config)?;
749
750// Sample data
751let X = Array2::random((1000, 10), Uniform::new(-1.0, 1.0));
752let y = Array1::from_vec((0..1000).map(|i| if i < 500 { 0.0 } else { 1.0 }).collect());
753
754// Train hybrid pipeline
755pipeline.fit(&X.into_dyn(), &y.into_dyn().insert_axis(Axis(1)))?;
756
757// Make predictions
758let test_X = Array2::random((100, 10), Uniform::new(-1.0, 1.0));
759let predictions = pipeline.predict(&test_X.into_dyn())?;
760"#.to_string(),
761                            expected_output: Some("Hybrid pipeline trained and predictions made".to_string()),
762                            explanation: "This demonstrates a hybrid approach combining quantum feature learning with classical decision making.".to_string(),
763                        }
764                    ],
765                    interactive_elements: vec![
766                        InteractiveElement {
767                            element_type: InteractiveType::Experiment,
768                            title: "Hybrid vs Pure Quantum Comparison".to_string(),
769                            instructions: "Compare performance of hybrid vs pure quantum approaches".to_string(),
770                            parameters: HashMap::new(),
771                        }
772                    ],
773                    key_concepts: vec![
774                        "Hybrid methods combine strengths of both paradigms".to_string(),
775                        "Quantum preprocessing can enhance classical ML".to_string(),
776                        "Careful design is crucial for hybrid success".to_string(),
777                    ],
778                },
779            ],
780            exercises: vec!["hybrid_credit_scoring".to_string()],
781        });
782
783        self.tutorials.insert(TutorialCategory::Hybrid, tutorials);
784    }
785
786    /// Register application tutorials
787    fn register_application_tutorials(&mut self) {
788        let mut tutorials = Vec::new();
789
790        // Finance Applications
791        tutorials.push(Tutorial {
792            id: "finance_qml".to_string(),
793            title: "Quantum ML for Finance".to_string(),
794            description: "Apply quantum machine learning to financial problems like portfolio optimization and risk assessment.".to_string(),
795            category: TutorialCategory::Applications,
796            difficulty: DifficultyLevel::Intermediate,
797            prerequisites: vec!["hybrid_ml".to_string(), "Finance domain knowledge".to_string()],
798            learning_objectives: vec![
799                "Apply QML to portfolio optimization".to_string(),
800                "Implement quantum risk models".to_string(),
801                "Use domain templates for finance".to_string(),
802                "Evaluate quantum advantage in finance".to_string(),
803            ],
804            duration_minutes: 95,
805            sections: vec![
806                TutorialSection {
807                    title: "Quantum Portfolio Optimization".to_string(),
808                    content: "Use quantum optimization for portfolio selection under constraints.".to_string(),
809                    code_examples: vec![
810                        CodeExample {
811                            title: "Portfolio Optimization with Domain Templates".to_string(),
812                            description: "Use finance domain templates for portfolio optimization".to_string(),
813                            code: r#"
814use quantrs2_ml::prelude::*;
815
816// Load domain template manager
817let template_manager = DomainTemplateManager::new();
818
819// Configure portfolio optimization template
820let config = TemplateConfig {
821    num_qubits: 10,
822    input_dim: 20, // 20 assets
823    output_dim: 20, // Portfolio weights
824    parameters: HashMap::new(),
825};
826
827// Create portfolio optimization model
828let mut portfolio_model = template_manager.create_model_from_template(
829    "Portfolio Optimization",
830    config
831)?;
832
833// Sample return data (20 assets, 252 trading days)
834let returns = Array2::random((252, 20), Normal::new(0.001, 0.02)?);
835
836// Risk-return optimization
837let expected_returns = returns.mean_axis(Axis(0)).unwrap();
838portfolio_model.train(&returns.into_dyn(), &expected_returns.into_dyn().insert_axis(Axis(1)))?;
839
840// Get optimal portfolio weights
841let optimal_weights = portfolio_model.predict(&expected_returns.into_dyn())?;
842"#.to_string(),
843                            expected_output: Some("Optimal portfolio weights computed".to_string()),
844                            explanation: "This uses quantum optimization to find optimal portfolio allocations.".to_string(),
845                        }
846                    ],
847                    interactive_elements: vec![],
848                    key_concepts: vec![
849                        "Quantum optimization for constrained problems".to_string(),
850                        "Risk-return trade-offs in portfolio theory".to_string(),
851                        "Domain templates simplify implementation".to_string(),
852                    ],
853                },
854            ],
855            exercises: vec!["portfolio_backtest".to_string()],
856        });
857
858        self.tutorials
859            .insert(TutorialCategory::Applications, tutorials);
860    }
861
862    /// Register advanced tutorials
863    fn register_advanced_tutorials(&mut self) {
864        let mut tutorials = Vec::new();
865
866        // Quantum Generative Models
867        tutorials.push(Tutorial {
868            id: "quantum_gans".to_string(),
869            title: "Quantum Generative Adversarial Networks".to_string(),
870            description: "Implement quantum GANs for generating quantum and classical data.".to_string(),
871            category: TutorialCategory::Advanced,
872            difficulty: DifficultyLevel::Expert,
873            prerequisites: vec!["qnn_intro".to_string(), "GAN knowledge".to_string()],
874            learning_objectives: vec![
875                "Understand quantum GAN architecture".to_string(),
876                "Implement quantum generator and discriminator".to_string(),
877                "Train quantum GANs on real data".to_string(),
878                "Evaluate generated samples quality".to_string(),
879            ],
880            duration_minutes: 150,
881            sections: vec![
882                TutorialSection {
883                    title: "Quantum GAN Architecture".to_string(),
884                    content: "Quantum GANs use quantum circuits as generators and/or discriminators.".to_string(),
885                    code_examples: vec![
886                        CodeExample {
887                            title: "Simple Quantum GAN".to_string(),
888                            description: "Implement a basic quantum GAN".to_string(),
889                            code: r#"
890use quantrs2_ml::prelude::*;
891
892// Configure quantum GAN
893let gan_config = GANConfig {
894    latent_dim: 4,
895    data_dim: 8,
896    generator_layers: 3,
897    discriminator_layers: 2,
898    learning_rate: 0.01,
899    batch_size: 32,
900    num_epochs: 100,
901};
902
903// Create enhanced quantum GAN
904let mut qgan = EnhancedQuantumGAN::new(gan_config)?;
905
906// Generate training data (simplified)
907let real_data = Array2::random((1000, 8), Normal::new(0.0, 1.0)?);
908
909// Train the quantum GAN
910qgan.train(&real_data)?;
911
912// Generate new samples
913let generated_samples = qgan.generate(100)?;
914"#.to_string(),
915                            expected_output: Some("Quantum GAN trained, samples generated".to_string()),
916                            explanation: "This implements a quantum GAN that can learn to generate data similar to the training set.".to_string(),
917                        }
918                    ],
919                    interactive_elements: vec![
920                        InteractiveElement {
921                            element_type: InteractiveType::Visualization,
922                            title: "GAN Training Dynamics".to_string(),
923                            instructions: "Visualize generator and discriminator loss during training".to_string(),
924                            parameters: HashMap::new(),
925                        }
926                    ],
927                    key_concepts: vec![
928                        "Adversarial training in quantum setting".to_string(),
929                        "Quantum advantage in generative modeling".to_string(),
930                        "Challenges in quantum GAN training".to_string(),
931                    ],
932                },
933            ],
934            exercises: vec!["qgan_mnist".to_string()],
935        });
936
937        self.tutorials.insert(TutorialCategory::Advanced, tutorials);
938    }
939
940    /// Register exercises
941    fn register_exercises(&mut self) {
942        // Basic quantum computing exercises
943        self.exercises.insert(
944            "qc_basic_gates".to_string(),
945            Exercise {
946                id: "qc_basic_gates".to_string(),
947                title: "Basic Quantum Gates".to_string(),
948                description:
949                    "Practice applying basic quantum gates and understanding their effects"
950                        .to_string(),
951                exercise_type: ExerciseType::CircuitDesign,
952                instructions: vec![
953                    "Create a 2-qubit circuit".to_string(),
954                    "Apply H gate to first qubit".to_string(),
955                    "Apply CNOT gate with first qubit as control".to_string(),
956                    "Measure both qubits".to_string(),
957                ],
958                starter_code: Some(
959                    r#"
960use quantrs2_circuit::prelude::*;
961
962fn create_bell_state() -> Result<QuantumCircuit> {
963    let mut circuit = QuantumCircuit::new(2);
964
965    // TODO: Add gates here
966
967    Ok(circuit)
968}
969"#
970                    .to_string(),
971                ),
972                solution_code: r#"
973use quantrs2_circuit::prelude::*;
974
975fn create_bell_state() -> Result<QuantumCircuit> {
976    let mut circuit = QuantumCircuit::new(2);
977
978    circuit.h(0);
979    circuit.cnot(0, 1);
980    circuit.measure_all();
981
982    Ok(circuit)
983}
984"#
985                .to_string(),
986                test_cases: vec![
987                    TestCase {
988                        description: "Circuit should have 2 qubits".to_string(),
989                        input: "circuit.num_qubits()".to_string(),
990                        expected_output: "2".to_string(),
991                        points: 10,
992                    },
993                    TestCase {
994                        description: "Circuit should create Bell state".to_string(),
995                        input: "measure_bell_state_fidelity()".to_string(),
996                        expected_output: "> 0.95".to_string(),
997                        points: 20,
998                    },
999                ],
1000                hints: vec![
1001                    "Remember that H gate creates superposition".to_string(),
1002                    "CNOT gate creates entanglement between qubits".to_string(),
1003                ],
1004            },
1005        );
1006
1007        // QNN classification exercise
1008        self.exercises.insert(
1009            "qnn_classification".to_string(),
1010            Exercise {
1011                id: "qnn_classification".to_string(),
1012                title: "QNN Binary Classification".to_string(),
1013                description: "Implement a quantum neural network for binary classification"
1014                    .to_string(),
1015                exercise_type: ExerciseType::AlgorithmImplementation,
1016                instructions: vec![
1017                    "Create a QNN with 4 qubits".to_string(),
1018                    "Add embedding and entangling layers".to_string(),
1019                    "Train on provided dataset".to_string(),
1020                    "Achieve >85% accuracy".to_string(),
1021                ],
1022                starter_code: Some(
1023                    r#"
1024use quantrs2_ml::prelude::*;
1025
1026fn train_qnn_classifier(X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<Box<dyn QuantumModel>> {
1027    // TODO: Implement QNN classifier
1028    unimplemented!()
1029}
1030"#
1031                    .to_string(),
1032                ),
1033                solution_code: r#"
1034use quantrs2_ml::prelude::*;
1035
1036fn train_qnn_classifier(X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<Box<dyn QuantumModel>> {
1037    let mut qnn_builder = QNNBuilder::new(4)
1038        .add_layer(QNNLayer::Embedding { rotation_gates: vec!["RY", "RZ"] })
1039        .add_layer(QNNLayer::Entangling { entangling_gate: "CNOT" })
1040        .add_layer(QNNLayer::Parameterized {
1041            gates: vec!["RY", "RZ"],
1042            num_parameters: 8
1043        });
1044
1045    let mut qnn = qnn_builder.build()?;
1046    qnn.train(X, y)?;
1047
1048    Ok(Box::new(qnn))
1049}
1050"#
1051                .to_string(),
1052                test_cases: vec![
1053                    TestCase {
1054                        description: "Model should train without errors".to_string(),
1055                        input: "train_qnn_classifier(&X, &y)".to_string(),
1056                        expected_output: "Ok(model)".to_string(),
1057                        points: 15,
1058                    },
1059                    TestCase {
1060                        description: "Model should achieve >85% accuracy".to_string(),
1061                        input: "evaluate_accuracy(&model, &X_test, &y_test)".to_string(),
1062                        expected_output: "> 0.85".to_string(),
1063                        points: 25,
1064                    },
1065                ],
1066                hints: vec![
1067                    "Use appropriate data encoding for your problem".to_string(),
1068                    "Try different ansatz architectures".to_string(),
1069                    "Monitor training convergence".to_string(),
1070                ],
1071            },
1072        );
1073    }
1074
1075    /// Get tutorials for a category
1076    pub fn get_category_tutorials(&self, category: &TutorialCategory) -> Option<&Vec<Tutorial>> {
1077        self.tutorials.get(category)
1078    }
1079
1080    /// Get all available categories
1081    pub fn get_available_categories(&self) -> Vec<TutorialCategory> {
1082        self.tutorials.keys().cloned().collect()
1083    }
1084
1085    /// Search tutorials by difficulty
1086    pub fn search_by_difficulty(&self, difficulty: &DifficultyLevel) -> Vec<&Tutorial> {
1087        self.tutorials
1088            .values()
1089            .flatten()
1090            .filter(|tutorial| {
1091                std::mem::discriminant(&tutorial.difficulty) == std::mem::discriminant(difficulty)
1092            })
1093            .collect()
1094    }
1095
1096    /// Get tutorial by ID
1097    pub fn get_tutorial(&self, tutorial_id: &str) -> Option<&Tutorial> {
1098        self.tutorials
1099            .values()
1100            .flatten()
1101            .find(|tutorial| tutorial.id == tutorial_id)
1102    }
1103
1104    /// Get exercise by ID
1105    pub fn get_exercise(&self, exercise_id: &str) -> Option<&Exercise> {
1106        self.exercises.get(exercise_id)
1107    }
1108
1109    /// Start tutorial for user
1110    pub fn start_tutorial(&mut self, user_id: String, tutorial_id: String) -> Result<()> {
1111        if !self
1112            .tutorials
1113            .values()
1114            .flatten()
1115            .any(|t| t.id == tutorial_id)
1116        {
1117            return Err(MLError::InvalidConfiguration(format!(
1118                "Tutorial not found: {}",
1119                tutorial_id
1120            )));
1121        }
1122
1123        let mut progress =
1124            self.progress
1125                .entry(user_id.clone())
1126                .or_insert_with(|| TutorialProgress {
1127                    user_id: user_id.clone(),
1128                    completed_tutorials: Vec::new(),
1129                    completed_exercises: Vec::new(),
1130                    current_tutorial: None,
1131                    scores: HashMap::new(),
1132                    time_spent: HashMap::new(),
1133                });
1134
1135        progress.current_tutorial = Some(tutorial_id);
1136        Ok(())
1137    }
1138
1139    /// Complete tutorial for user
1140    pub fn complete_tutorial(
1141        &mut self,
1142        user_id: &str,
1143        tutorial_id: String,
1144        score: f64,
1145        time_minutes: usize,
1146    ) -> Result<()> {
1147        let progress = self
1148            .progress
1149            .get_mut(user_id)
1150            .ok_or_else(|| MLError::InvalidConfiguration("User not found".to_string()))?;
1151
1152        progress.completed_tutorials.push(tutorial_id.clone());
1153        progress.scores.insert(tutorial_id.clone(), score);
1154        progress.time_spent.insert(tutorial_id, time_minutes);
1155        progress.current_tutorial = None;
1156
1157        Ok(())
1158    }
1159
1160    /// Get learning path recommendations
1161    pub fn recommend_learning_path(&self, user_background: &UserBackground) -> Vec<String> {
1162        let mut path = Vec::new();
1163
1164        match user_background.experience_level {
1165            ExperienceLevel::Beginner => {
1166                path.extend(vec![
1167                    "qc_intro".to_string(),
1168                    "qc_circuits".to_string(),
1169                    "qnn_intro".to_string(),
1170                    "qsvm_tutorial".to_string(),
1171                ]);
1172            }
1173            ExperienceLevel::Intermediate => {
1174                path.extend(vec![
1175                    "qnn_intro".to_string(),
1176                    "qsvm_tutorial".to_string(),
1177                    "vqe_tutorial".to_string(),
1178                    "hybrid_ml".to_string(),
1179                ]);
1180            }
1181            ExperienceLevel::Advanced => {
1182                path.extend(vec![
1183                    "vqe_tutorial".to_string(),
1184                    "qaoa_tutorial".to_string(),
1185                    "hybrid_ml".to_string(),
1186                    "quantum_gans".to_string(),
1187                ]);
1188            }
1189        }
1190
1191        // Add domain-specific tutorials
1192        if let Some(domain) = &user_background.target_domain {
1193            match domain.as_str() {
1194                "finance" => path.push("finance_qml".to_string()),
1195                _ => {} // Add other domains as needed
1196            }
1197        }
1198
1199        path
1200    }
1201
1202    /// Run interactive tutorial session
1203    pub fn run_interactive_session(&self, tutorial_id: &str) -> Result<TutorialSession> {
1204        let tutorial = self.get_tutorial(tutorial_id).ok_or_else(|| {
1205            MLError::InvalidConfiguration(format!("Tutorial not found: {}", tutorial_id))
1206        })?;
1207
1208        Ok(TutorialSession {
1209            tutorial_id: tutorial_id.to_string(),
1210            current_section: 0,
1211            completed_sections: Vec::new(),
1212            session_start_time: std::time::SystemTime::now(),
1213            interactive_state: HashMap::new(),
1214        })
1215    }
1216}
1217
1218/// User background for personalized recommendations
1219#[derive(Debug, Clone)]
1220pub struct UserBackground {
1221    /// Experience level with quantum computing
1222    pub experience_level: ExperienceLevel,
1223    /// Classical ML experience
1224    pub classical_ml_experience: bool,
1225    /// Programming languages known
1226    pub programming_languages: Vec<String>,
1227    /// Target application domain
1228    pub target_domain: Option<String>,
1229    /// Learning goals
1230    pub learning_goals: Vec<String>,
1231}
1232
1233/// Experience levels
1234#[derive(Debug, Clone)]
1235pub enum ExperienceLevel {
1236    Beginner,
1237    Intermediate,
1238    Advanced,
1239}
1240
1241/// Interactive tutorial session
1242#[derive(Debug, Clone)]
1243pub struct TutorialSession {
1244    /// Tutorial ID
1245    pub tutorial_id: String,
1246    /// Current section index
1247    pub current_section: usize,
1248    /// Completed sections
1249    pub completed_sections: Vec<usize>,
1250    /// Session start time
1251    pub session_start_time: std::time::SystemTime,
1252    /// Interactive state
1253    pub interactive_state: HashMap<String, String>,
1254}
1255
1256impl TutorialSession {
1257    /// Get current section
1258    pub fn current_section(&self) -> usize {
1259        self.current_section
1260    }
1261
1262    /// Mark section as complete
1263    pub fn complete_section(&mut self) {
1264        if !self.completed_sections.contains(&self.current_section) {
1265            self.completed_sections.push(self.current_section);
1266        }
1267        self.current_section += 1;
1268    }
1269
1270    /// Check if tutorial is complete
1271    pub fn is_complete(&self, total_sections: usize) -> bool {
1272        self.completed_sections.len() >= total_sections
1273    }
1274
1275    /// Get total number of sections for this tutorial
1276    pub fn total_sections(&self) -> usize {
1277        // This would typically be retrieved from the tutorial manager
1278        // For now, return a default value
1279        10
1280    }
1281
1282    /// Get estimated duration for this tutorial in minutes
1283    pub fn estimated_duration(&self) -> usize {
1284        // This would typically be calculated based on tutorial content
1285        // For now, return a default value
1286        30
1287    }
1288}
1289
1290/// Utility functions for tutorials
1291pub mod utils {
1292    use super::*;
1293
1294    /// Create beginner learning path
1295    pub fn create_beginner_path() -> Vec<String> {
1296        vec![
1297            "qc_intro".to_string(),
1298            "qc_circuits".to_string(),
1299            "qnn_intro".to_string(),
1300            "qsvm_tutorial".to_string(),
1301            "hybrid_ml".to_string(),
1302        ]
1303    }
1304
1305    /// Create advanced learning path
1306    pub fn create_advanced_path() -> Vec<String> {
1307        vec![
1308            "vqe_tutorial".to_string(),
1309            "qaoa_tutorial".to_string(),
1310            "quantum_gans".to_string(),
1311            "finance_qml".to_string(),
1312        ]
1313    }
1314
1315    /// Generate tutorial progress report
1316    pub fn generate_progress_report(progress: &TutorialProgress) -> String {
1317        let mut report = String::new();
1318        report.push_str(&format!(
1319            "Tutorial Progress Report for User: {}\n",
1320            progress.user_id
1321        ));
1322        report.push_str("=".repeat(50).as_str());
1323        report.push_str("\n\n");
1324
1325        report.push_str(&format!(
1326            "Completed Tutorials: {}\n",
1327            progress.completed_tutorials.len()
1328        ));
1329        report.push_str(&format!(
1330            "Completed Exercises: {}\n",
1331            progress.completed_exercises.len()
1332        ));
1333
1334        if let Some(current) = &progress.current_tutorial {
1335            report.push_str(&format!("Current Tutorial: {}\n", current));
1336        }
1337
1338        report.push_str("\nScores:\n");
1339        for (tutorial, score) in &progress.scores {
1340            report.push_str(&format!("  {}: {:.1}%\n", tutorial, score * 100.0));
1341        }
1342
1343        let total_time: usize = progress.time_spent.values().sum();
1344        report.push_str(&format!("\nTotal Learning Time: {} minutes\n", total_time));
1345
1346        report
1347    }
1348
1349    /// Validate exercise solution
1350    pub fn validate_exercise_solution(exercise: &Exercise, user_code: &str) -> ExerciseResult {
1351        // Simplified validation - in practice would compile and test code
1352        let mut passed_tests = 0;
1353        let total_tests = exercise.test_cases.len();
1354
1355        // Basic validation checks
1356        if user_code.contains("TODO") {
1357            return ExerciseResult {
1358                passed: false,
1359                score: 0.0,
1360                passed_tests,
1361                total_tests,
1362                feedback: "Remove TODO comments and implement the solution".to_string(),
1363                hints_used: 0,
1364            };
1365        }
1366
1367        // Mock test execution
1368        passed_tests = if user_code.len() > 100 {
1369            total_tests
1370        } else {
1371            total_tests / 2
1372        };
1373
1374        let score = passed_tests as f64 / total_tests as f64;
1375        let passed = score >= 0.7;
1376
1377        ExerciseResult {
1378            passed,
1379            score,
1380            passed_tests,
1381            total_tests,
1382            feedback: if passed {
1383                "Great job! All tests passed.".to_string()
1384            } else {
1385                "Some tests failed. Check the hints and try again.".to_string()
1386            },
1387            hints_used: 0,
1388        }
1389    }
1390}
1391
1392/// Exercise result
1393#[derive(Debug, Clone)]
1394pub struct ExerciseResult {
1395    /// Whether exercise passed
1396    pub passed: bool,
1397    /// Score (0.0 to 1.0)
1398    pub score: f64,
1399    /// Number of tests passed
1400    pub passed_tests: usize,
1401    /// Total number of tests
1402    pub total_tests: usize,
1403    /// Feedback message
1404    pub feedback: String,
1405    /// Number of hints used
1406    pub hints_used: usize,
1407}
1408
1409#[cfg(test)]
1410mod tests {
1411    use super::*;
1412
1413    #[test]
1414    fn test_tutorial_manager_creation() {
1415        let manager = TutorialManager::new();
1416        assert!(!manager.get_available_categories().is_empty());
1417    }
1418
1419    #[test]
1420    fn test_get_tutorial() {
1421        let manager = TutorialManager::new();
1422        let tutorial = manager.get_tutorial("qc_intro");
1423        assert!(tutorial.is_some());
1424        assert_eq!(tutorial.unwrap().title, "Introduction to Quantum Computing");
1425    }
1426
1427    #[test]
1428    fn test_difficulty_search() {
1429        let manager = TutorialManager::new();
1430        let beginner_tutorials = manager.search_by_difficulty(&DifficultyLevel::Beginner);
1431        assert!(!beginner_tutorials.is_empty());
1432
1433        for tutorial in beginner_tutorials {
1434            assert!(matches!(tutorial.difficulty, DifficultyLevel::Beginner));
1435        }
1436    }
1437
1438    #[test]
1439    fn test_learning_path_recommendation() {
1440        let manager = TutorialManager::new();
1441        let background = UserBackground {
1442            experience_level: ExperienceLevel::Beginner,
1443            classical_ml_experience: true,
1444            programming_languages: vec!["Python".to_string(), "Rust".to_string()],
1445            target_domain: Some("finance".to_string()),
1446            learning_goals: vec!["Learn quantum ML basics".to_string()],
1447        };
1448
1449        let path = manager.recommend_learning_path(&background);
1450        assert!(!path.is_empty());
1451        assert!(path.contains(&"qc_intro".to_string()));
1452    }
1453
1454    #[test]
1455    fn test_tutorial_progress() {
1456        let mut manager = TutorialManager::new();
1457        let user_id = "test_user".to_string();
1458        let tutorial_id = "qc_intro".to_string();
1459
1460        // Start tutorial
1461        manager
1462            .start_tutorial(user_id.clone(), tutorial_id.clone())
1463            .unwrap();
1464
1465        // Complete tutorial
1466        manager
1467            .complete_tutorial(&user_id, tutorial_id.clone(), 0.95, 45)
1468            .unwrap();
1469
1470        let progress = manager.progress.get(&user_id).unwrap();
1471        assert!(progress.completed_tutorials.contains(&tutorial_id));
1472        assert_eq!(progress.scores.get(&tutorial_id), Some(&0.95));
1473    }
1474
1475    #[test]
1476    fn test_exercise_validation() {
1477        let manager = TutorialManager::new();
1478        let exercise = manager.get_exercise("qc_basic_gates").unwrap();
1479
1480        let good_solution = r#"
1481        use quantrs2_circuit::prelude::*;
1482
1483        fn create_bell_state() -> Result<QuantumCircuit> {
1484            let mut circuit = QuantumCircuit::new(2);
1485            circuit.h(0);
1486            circuit.cnot(0, 1);
1487            circuit.measure_all();
1488            Ok(circuit)
1489        }
1490        "#;
1491
1492        let result = utils::validate_exercise_solution(exercise, good_solution);
1493        assert!(result.passed);
1494        assert!(result.score > 0.7);
1495    }
1496
1497    #[test]
1498    fn test_interactive_session() {
1499        let manager = TutorialManager::new();
1500        let session = manager.run_interactive_session("qc_intro").unwrap();
1501
1502        assert_eq!(session.tutorial_id, "qc_intro");
1503        assert_eq!(session.current_section, 0);
1504        assert!(session.completed_sections.is_empty());
1505    }
1506}