QuantumDiffusionModel

Struct QuantumDiffusionModel 

Source
pub struct QuantumDiffusionModel { /* private fields */ }
Expand description

Quantum diffusion model

Implementations§

Source§

impl QuantumDiffusionModel

Source

pub fn new( data_dim: usize, num_qubits: usize, num_timesteps: usize, noise_schedule: NoiseSchedule, ) -> Result<Self>

Create a new quantum diffusion model

Examples found in repository?
examples/quantum_diffusion.rs (line 76)
40fn compare_noise_schedules() -> Result<()> {
41    let num_timesteps = 100;
42
43    let schedules = vec![
44        (
45            "Linear",
46            NoiseSchedule::Linear {
47                beta_start: 0.0001,
48                beta_end: 0.02,
49            },
50        ),
51        ("Cosine", NoiseSchedule::Cosine { s: 0.008 }),
52        (
53            "Quadratic",
54            NoiseSchedule::Quadratic {
55                beta_start: 0.0001,
56                beta_end: 0.02,
57            },
58        ),
59        (
60            "Sigmoid",
61            NoiseSchedule::Sigmoid {
62                beta_start: 0.0001,
63                beta_end: 0.02,
64            },
65        ),
66    ];
67
68    println!("   Noise levels at different timesteps:");
69    println!("   Time     Linear   Cosine   Quadratic  Sigmoid");
70
71    for t in (0..=100).step_by(20) {
72        let t_idx = (t * (num_timesteps - 1) / 100).min(num_timesteps - 1);
73        print!("   t={:3}%: ", t);
74
75        for (_, schedule) in &schedules {
76            let model = QuantumDiffusionModel::new(2, 4, num_timesteps, *schedule)?;
77            print!("{:8.4} ", model.betas()[t_idx]);
78        }
79        println!();
80    }
81
82    Ok(())
83}
84
85/// Train a quantum diffusion model
86fn train_diffusion_model() -> Result<()> {
87    // Generate synthetic 2D data (two moons)
88    let num_samples = 200;
89    let data = generate_two_moons(num_samples);
90
91    println!("   Generated {} samples of 2D two-moons data", num_samples);
92
93    // Create diffusion model
94    let mut model = QuantumDiffusionModel::new(
95        2,  // data dimension
96        4,  // num qubits
97        50, // timesteps
98        NoiseSchedule::Cosine { s: 0.008 },
99    )?;
100
101    println!("   Created quantum diffusion model:");
102    println!("   - Data dimension: 2");
103    println!("   - Qubits: 4");
104    println!("   - Timesteps: 50");
105    println!("   - Schedule: Cosine");
106
107    // Train model
108    let mut optimizer = Adam::new(0.001);
109    let epochs = 100;
110    let batch_size = 32;
111
112    println!("\n   Training for {} epochs...", epochs);
113    let losses = model.train(&data, &mut optimizer, epochs, batch_size)?;
114
115    // Print training statistics
116    println!("\n   Training Statistics:");
117    println!("   - Initial loss: {:.4}", losses[0]);
118    println!("   - Final loss: {:.4}", losses.last().unwrap());
119    println!(
120        "   - Improvement: {:.2}%",
121        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
122    );
123
124    Ok(())
125}
126
127/// Generate samples from trained model
128fn generate_samples() -> Result<()> {
129    // Create a simple trained model
130    let model = QuantumDiffusionModel::new(
131        2,  // data dimension
132        4,  // num qubits
133        50, // timesteps
134        NoiseSchedule::Linear {
135            beta_start: 0.0001,
136            beta_end: 0.02,
137        },
138    )?;
139
140    // Generate samples
141    let num_samples = 10;
142    println!("   Generating {} samples...", num_samples);
143
144    let samples = model.generate(num_samples)?;
145
146    println!("\n   Generated samples:");
147    for i in 0..num_samples.min(5) {
148        println!(
149            "   Sample {}: [{:.3}, {:.3}]",
150            i + 1,
151            samples[[i, 0]],
152            samples[[i, 1]]
153        );
154    }
155
156    // Compute statistics
157    let mean = samples.mean_axis(scirs2_core::ndarray::Axis(0)).unwrap();
158    let std = samples.std_axis(scirs2_core::ndarray::Axis(0), 0.0);
159
160    println!("\n   Sample statistics:");
161    println!("   - Mean: [{:.3}, {:.3}]", mean[0], mean[1]);
162    println!("   - Std:  [{:.3}, {:.3}]", std[0], std[1]);
163
164    Ok(())
165}
166
167/// Score-based diffusion demonstration
168fn score_diffusion_demo() -> Result<()> {
169    // Create score-based model
170    let model = QuantumScoreDiffusion::new(
171        2,  // data dimension
172        4,  // num qubits
173        10, // noise levels
174    )?;
175
176    println!("   Created quantum score-based diffusion model");
177    println!("   - Noise levels: {:?}", model.noise_levels());
178
179    // Test score estimation
180    let x = Array1::from_vec(vec![0.5, -0.3]);
181    let noise_level = 0.1;
182
183    let score = model.estimate_score(&x, noise_level)?;
184    println!("\n   Score estimation:");
185    println!("   - Input: [{:.3}, {:.3}]", x[0], x[1]);
186    println!("   - Noise level: {:.3}", noise_level);
187    println!("   - Estimated score: [{:.3}, {:.3}]", score[0], score[1]);
188
189    // Langevin sampling
190    println!("\n   Langevin sampling:");
191    let init = Array1::from_vec(vec![2.0, 2.0]);
192    let num_steps = 100;
193    let step_size = 0.01;
194
195    let sample = model.langevin_sample(init.clone(), noise_level, num_steps, step_size)?;
196
197    println!("   - Initial: [{:.3}, {:.3}]", init[0], init[1]);
198    println!(
199        "   - After {} steps: [{:.3}, {:.3}]",
200        num_steps, sample[0], sample[1]
201    );
202    println!(
203        "   - Distance moved: {:.3}",
204        ((sample[0] - init[0]).powi(2) + (sample[1] - init[1]).powi(2)).sqrt()
205    );
206
207    Ok(())
208}
209
210/// Visualize the diffusion process
211fn visualize_diffusion_process() -> Result<()> {
212    let model = QuantumDiffusionModel::new(
213        2,  // data dimension
214        4,  // num qubits
215        20, // fewer timesteps for visualization
216        NoiseSchedule::Linear {
217            beta_start: 0.0001,
218            beta_end: 0.02,
219        },
220    )?;
221
222    // Start with a clear data point
223    let x0 = Array1::from_vec(vec![1.0, 0.5]);
224
225    println!("   Forward diffusion process:");
226    println!("   t=0 (original): [{:.3}, {:.3}]", x0[0], x0[1]);
227
228    // Show forward diffusion at different timesteps
229    for t in [5, 10, 15, 19] {
230        let (xt, _) = model.forward_diffusion(&x0, t)?;
231        let noise_level = (1.0 - model.alphas_cumprod()[t]).sqrt();
232        println!(
233            "   t={:2} (noise={:.3}): [{:.3}, {:.3}]",
234            t, noise_level, xt[0], xt[1]
235        );
236    }
237
238    println!("\n   Reverse diffusion process:");
239
240    // Start from noise
241    let mut xt = Array1::from_vec(vec![
242        2.0 * thread_rng().gen::<f64>() - 1.0,
243        2.0 * thread_rng().gen::<f64>() - 1.0,
244    ]);
245
246    println!("   t=19 (pure noise): [{:.3}, {:.3}]", xt[0], xt[1]);
247
248    // Show reverse diffusion
249    for t in [15, 10, 5, 0] {
250        xt = model.reverse_diffusion_step(&xt, t)?;
251        println!("   t={:2} (denoised): [{:.3}, {:.3}]", t, xt[0], xt[1]);
252    }
253
254    println!("\n   This demonstrates how diffusion models:");
255    println!("   1. Gradually add noise to data (forward process)");
256    println!("   2. Learn to reverse this process (backward process)");
257    println!("   3. Generate new samples by denoising random noise");
258
259    Ok(())
260}
261
262/// Generate two-moons dataset
263fn generate_two_moons(n_samples: usize) -> Array2<f64> {
264    let mut data = Array2::zeros((n_samples, 2));
265    let n_samples_per_moon = n_samples / 2;
266
267    // First moon
268    for i in 0..n_samples_per_moon {
269        let angle = std::f64::consts::PI * i as f64 / n_samples_per_moon as f64;
270        data[[i, 0]] = angle.cos() + 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
271        data[[i, 1]] = angle.sin() + 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
272    }
273
274    // Second moon (shifted and flipped)
275    for i in 0..n_samples_per_moon {
276        let idx = n_samples_per_moon + i;
277        let angle = std::f64::consts::PI * i as f64 / n_samples_per_moon as f64;
278        data[[idx, 0]] = 1.0 - angle.cos() + 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
279        data[[idx, 1]] = 0.5 - angle.sin() + 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
280    }
281
282    data
283}
284
285/// Advanced diffusion techniques demonstration
286fn advanced_diffusion_demo() -> Result<()> {
287    println!("\n6. Advanced Diffusion Techniques:");
288
289    // Conditional generation
290    println!("\n   a) Conditional Generation:");
291    let model = QuantumDiffusionModel::new(4, 4, 50, NoiseSchedule::Cosine { s: 0.008 })?;
292    let condition = Array1::from_vec(vec![0.5, -0.5]);
293    let conditional_samples = model.conditional_generate(&condition, 5)?;
294
295    println!(
296        "   Generated {} conditional samples",
297        conditional_samples.nrows()
298    );
299    println!("   Condition: [{:.3}, {:.3}]", condition[0], condition[1]);
300
301    // Variational diffusion
302    println!("\n   b) Variational Diffusion Model:");
303    let vdm = QuantumVariationalDiffusion::new(
304        4, // data_dim
305        2, // latent_dim
306        4, // num_qubits
307    )?;
308
309    let x = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
310    let (mean, log_var) = vdm.encode(&x)?;
311
312    println!("   Encoded data to latent space:");
313    println!("   - Input: {:?}", x.as_slice().unwrap());
314    println!("   - Latent mean: [{:.3}, {:.3}]", mean[0], mean[1]);
315    println!(
316        "   - Latent log_var: [{:.3}, {:.3}]",
317        log_var[0], log_var[1]
318    );
319
320    Ok(())
321}
Source

pub fn forward_diffusion( &self, x0: &Array1<f64>, t: usize, ) -> Result<(Array1<f64>, Array1<f64>)>

Forward diffusion process: add noise to data

Examples found in repository?
examples/quantum_diffusion.rs (line 230)
211fn visualize_diffusion_process() -> Result<()> {
212    let model = QuantumDiffusionModel::new(
213        2,  // data dimension
214        4,  // num qubits
215        20, // fewer timesteps for visualization
216        NoiseSchedule::Linear {
217            beta_start: 0.0001,
218            beta_end: 0.02,
219        },
220    )?;
221
222    // Start with a clear data point
223    let x0 = Array1::from_vec(vec![1.0, 0.5]);
224
225    println!("   Forward diffusion process:");
226    println!("   t=0 (original): [{:.3}, {:.3}]", x0[0], x0[1]);
227
228    // Show forward diffusion at different timesteps
229    for t in [5, 10, 15, 19] {
230        let (xt, _) = model.forward_diffusion(&x0, t)?;
231        let noise_level = (1.0 - model.alphas_cumprod()[t]).sqrt();
232        println!(
233            "   t={:2} (noise={:.3}): [{:.3}, {:.3}]",
234            t, noise_level, xt[0], xt[1]
235        );
236    }
237
238    println!("\n   Reverse diffusion process:");
239
240    // Start from noise
241    let mut xt = Array1::from_vec(vec![
242        2.0 * thread_rng().gen::<f64>() - 1.0,
243        2.0 * thread_rng().gen::<f64>() - 1.0,
244    ]);
245
246    println!("   t=19 (pure noise): [{:.3}, {:.3}]", xt[0], xt[1]);
247
248    // Show reverse diffusion
249    for t in [15, 10, 5, 0] {
250        xt = model.reverse_diffusion_step(&xt, t)?;
251        println!("   t={:2} (denoised): [{:.3}, {:.3}]", t, xt[0], xt[1]);
252    }
253
254    println!("\n   This demonstrates how diffusion models:");
255    println!("   1. Gradually add noise to data (forward process)");
256    println!("   2. Learn to reverse this process (backward process)");
257    println!("   3. Generate new samples by denoising random noise");
258
259    Ok(())
260}
Source

pub fn predict_noise(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>>

Predict noise from noisy data using quantum circuit

Source

pub fn reverse_diffusion_step( &self, xt: &Array1<f64>, t: usize, ) -> Result<Array1<f64>>

Reverse diffusion process: denoise step by step

Examples found in repository?
examples/quantum_diffusion.rs (line 250)
211fn visualize_diffusion_process() -> Result<()> {
212    let model = QuantumDiffusionModel::new(
213        2,  // data dimension
214        4,  // num qubits
215        20, // fewer timesteps for visualization
216        NoiseSchedule::Linear {
217            beta_start: 0.0001,
218            beta_end: 0.02,
219        },
220    )?;
221
222    // Start with a clear data point
223    let x0 = Array1::from_vec(vec![1.0, 0.5]);
224
225    println!("   Forward diffusion process:");
226    println!("   t=0 (original): [{:.3}, {:.3}]", x0[0], x0[1]);
227
228    // Show forward diffusion at different timesteps
229    for t in [5, 10, 15, 19] {
230        let (xt, _) = model.forward_diffusion(&x0, t)?;
231        let noise_level = (1.0 - model.alphas_cumprod()[t]).sqrt();
232        println!(
233            "   t={:2} (noise={:.3}): [{:.3}, {:.3}]",
234            t, noise_level, xt[0], xt[1]
235        );
236    }
237
238    println!("\n   Reverse diffusion process:");
239
240    // Start from noise
241    let mut xt = Array1::from_vec(vec![
242        2.0 * thread_rng().gen::<f64>() - 1.0,
243        2.0 * thread_rng().gen::<f64>() - 1.0,
244    ]);
245
246    println!("   t=19 (pure noise): [{:.3}, {:.3}]", xt[0], xt[1]);
247
248    // Show reverse diffusion
249    for t in [15, 10, 5, 0] {
250        xt = model.reverse_diffusion_step(&xt, t)?;
251        println!("   t={:2} (denoised): [{:.3}, {:.3}]", t, xt[0], xt[1]);
252    }
253
254    println!("\n   This demonstrates how diffusion models:");
255    println!("   1. Gradually add noise to data (forward process)");
256    println!("   2. Learn to reverse this process (backward process)");
257    println!("   3. Generate new samples by denoising random noise");
258
259    Ok(())
260}
Source

pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>>

Generate new samples

Examples found in repository?
examples/quantum_diffusion.rs (line 144)
128fn generate_samples() -> Result<()> {
129    // Create a simple trained model
130    let model = QuantumDiffusionModel::new(
131        2,  // data dimension
132        4,  // num qubits
133        50, // timesteps
134        NoiseSchedule::Linear {
135            beta_start: 0.0001,
136            beta_end: 0.02,
137        },
138    )?;
139
140    // Generate samples
141    let num_samples = 10;
142    println!("   Generating {} samples...", num_samples);
143
144    let samples = model.generate(num_samples)?;
145
146    println!("\n   Generated samples:");
147    for i in 0..num_samples.min(5) {
148        println!(
149            "   Sample {}: [{:.3}, {:.3}]",
150            i + 1,
151            samples[[i, 0]],
152            samples[[i, 1]]
153        );
154    }
155
156    // Compute statistics
157    let mean = samples.mean_axis(scirs2_core::ndarray::Axis(0)).unwrap();
158    let std = samples.std_axis(scirs2_core::ndarray::Axis(0), 0.0);
159
160    println!("\n   Sample statistics:");
161    println!("   - Mean: [{:.3}, {:.3}]", mean[0], mean[1]);
162    println!("   - Std:  [{:.3}, {:.3}]", std[0], std[1]);
163
164    Ok(())
165}
Source

pub fn train( &mut self, data: &Array2<f64>, optimizer: &mut dyn Optimizer, epochs: usize, batch_size: usize, ) -> Result<Vec<f64>>

Train the diffusion model

Examples found in repository?
examples/quantum_diffusion.rs (line 113)
86fn train_diffusion_model() -> Result<()> {
87    // Generate synthetic 2D data (two moons)
88    let num_samples = 200;
89    let data = generate_two_moons(num_samples);
90
91    println!("   Generated {} samples of 2D two-moons data", num_samples);
92
93    // Create diffusion model
94    let mut model = QuantumDiffusionModel::new(
95        2,  // data dimension
96        4,  // num qubits
97        50, // timesteps
98        NoiseSchedule::Cosine { s: 0.008 },
99    )?;
100
101    println!("   Created quantum diffusion model:");
102    println!("   - Data dimension: 2");
103    println!("   - Qubits: 4");
104    println!("   - Timesteps: 50");
105    println!("   - Schedule: Cosine");
106
107    // Train model
108    let mut optimizer = Adam::new(0.001);
109    let epochs = 100;
110    let batch_size = 32;
111
112    println!("\n   Training for {} epochs...", epochs);
113    let losses = model.train(&data, &mut optimizer, epochs, batch_size)?;
114
115    // Print training statistics
116    println!("\n   Training Statistics:");
117    println!("   - Initial loss: {:.4}", losses[0]);
118    println!("   - Final loss: {:.4}", losses.last().unwrap());
119    println!(
120        "   - Improvement: {:.2}%",
121        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
122    );
123
124    Ok(())
125}
Source

pub fn conditional_generate( &self, condition: &Array1<f64>, num_samples: usize, ) -> Result<Array2<f64>>

Conditional generation given a condition

Examples found in repository?
examples/quantum_diffusion.rs (line 293)
286fn advanced_diffusion_demo() -> Result<()> {
287    println!("\n6. Advanced Diffusion Techniques:");
288
289    // Conditional generation
290    println!("\n   a) Conditional Generation:");
291    let model = QuantumDiffusionModel::new(4, 4, 50, NoiseSchedule::Cosine { s: 0.008 })?;
292    let condition = Array1::from_vec(vec![0.5, -0.5]);
293    let conditional_samples = model.conditional_generate(&condition, 5)?;
294
295    println!(
296        "   Generated {} conditional samples",
297        conditional_samples.nrows()
298    );
299    println!("   Condition: [{:.3}, {:.3}]", condition[0], condition[1]);
300
301    // Variational diffusion
302    println!("\n   b) Variational Diffusion Model:");
303    let vdm = QuantumVariationalDiffusion::new(
304        4, // data_dim
305        2, // latent_dim
306        4, // num_qubits
307    )?;
308
309    let x = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
310    let (mean, log_var) = vdm.encode(&x)?;
311
312    println!("   Encoded data to latent space:");
313    println!("   - Input: {:?}", x.as_slice().unwrap());
314    println!("   - Latent mean: [{:.3}, {:.3}]", mean[0], mean[1]);
315    println!(
316        "   - Latent log_var: [{:.3}, {:.3}]",
317        log_var[0], log_var[1]
318    );
319
320    Ok(())
321}
Source

pub fn betas(&self) -> &Array1<f64>

Get beta values

Examples found in repository?
examples/quantum_diffusion.rs (line 77)
40fn compare_noise_schedules() -> Result<()> {
41    let num_timesteps = 100;
42
43    let schedules = vec![
44        (
45            "Linear",
46            NoiseSchedule::Linear {
47                beta_start: 0.0001,
48                beta_end: 0.02,
49            },
50        ),
51        ("Cosine", NoiseSchedule::Cosine { s: 0.008 }),
52        (
53            "Quadratic",
54            NoiseSchedule::Quadratic {
55                beta_start: 0.0001,
56                beta_end: 0.02,
57            },
58        ),
59        (
60            "Sigmoid",
61            NoiseSchedule::Sigmoid {
62                beta_start: 0.0001,
63                beta_end: 0.02,
64            },
65        ),
66    ];
67
68    println!("   Noise levels at different timesteps:");
69    println!("   Time     Linear   Cosine   Quadratic  Sigmoid");
70
71    for t in (0..=100).step_by(20) {
72        let t_idx = (t * (num_timesteps - 1) / 100).min(num_timesteps - 1);
73        print!("   t={:3}%: ", t);
74
75        for (_, schedule) in &schedules {
76            let model = QuantumDiffusionModel::new(2, 4, num_timesteps, *schedule)?;
77            print!("{:8.4} ", model.betas()[t_idx]);
78        }
79        println!();
80    }
81
82    Ok(())
83}
Source

pub fn alphas_cumprod(&self) -> &Array1<f64>

Get alpha cumulative product values

Examples found in repository?
examples/quantum_diffusion.rs (line 231)
211fn visualize_diffusion_process() -> Result<()> {
212    let model = QuantumDiffusionModel::new(
213        2,  // data dimension
214        4,  // num qubits
215        20, // fewer timesteps for visualization
216        NoiseSchedule::Linear {
217            beta_start: 0.0001,
218            beta_end: 0.02,
219        },
220    )?;
221
222    // Start with a clear data point
223    let x0 = Array1::from_vec(vec![1.0, 0.5]);
224
225    println!("   Forward diffusion process:");
226    println!("   t=0 (original): [{:.3}, {:.3}]", x0[0], x0[1]);
227
228    // Show forward diffusion at different timesteps
229    for t in [5, 10, 15, 19] {
230        let (xt, _) = model.forward_diffusion(&x0, t)?;
231        let noise_level = (1.0 - model.alphas_cumprod()[t]).sqrt();
232        println!(
233            "   t={:2} (noise={:.3}): [{:.3}, {:.3}]",
234            t, noise_level, xt[0], xt[1]
235        );
236    }
237
238    println!("\n   Reverse diffusion process:");
239
240    // Start from noise
241    let mut xt = Array1::from_vec(vec![
242        2.0 * thread_rng().gen::<f64>() - 1.0,
243        2.0 * thread_rng().gen::<f64>() - 1.0,
244    ]);
245
246    println!("   t=19 (pure noise): [{:.3}, {:.3}]", xt[0], xt[1]);
247
248    // Show reverse diffusion
249    for t in [15, 10, 5, 0] {
250        xt = model.reverse_diffusion_step(&xt, t)?;
251        println!("   t={:2} (denoised): [{:.3}, {:.3}]", t, xt[0], xt[1]);
252    }
253
254    println!("\n   This demonstrates how diffusion models:");
255    println!("   1. Gradually add noise to data (forward process)");
256    println!("   2. Learn to reverse this process (backward process)");
257    println!("   3. Generate new samples by denoising random noise");
258
259    Ok(())
260}

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,