quantrs2_ml/
diffusion.rs

1//! Quantum Diffusion Models
2//!
3//! This module implements quantum diffusion models for generative modeling,
4//! adapting the denoising diffusion probabilistic model (DDPM) framework
5//! to quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use scirs2_core::random::prelude::*;
9use crate::error::{MLError, Result};
10use crate::optimization::OptimizationMethod;
11use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
12use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1};
13use quantrs2_circuit::builder::{Circuit, Simulator};
14use quantrs2_core::gate::{
15    single::{RotationX, RotationY, RotationZ},
16    GateOp,
17};
18use quantrs2_sim::statevector::StateVectorSimulator;
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22/// Noise schedule types for diffusion process
23#[derive(Debug, Clone, Copy)]
24pub enum NoiseSchedule {
25    /// Linear schedule: β_t increases linearly
26    Linear { beta_start: f64, beta_end: f64 },
27
28    /// Cosine schedule: smoother noise addition
29    Cosine { s: f64 },
30
31    /// Quadratic schedule
32    Quadratic { beta_start: f64, beta_end: f64 },
33
34    /// Sigmoid schedule
35    Sigmoid { beta_start: f64, beta_end: f64 },
36}
37
38/// Quantum diffusion model
39pub struct QuantumDiffusionModel {
40    /// Denoising network
41    denoiser: QuantumNeuralNetwork,
42
43    /// Number of diffusion timesteps
44    num_timesteps: usize,
45
46    /// Noise schedule
47    noise_schedule: NoiseSchedule,
48
49    /// Beta values for each timestep
50    betas: Array1<f64>,
51
52    /// Alpha values (1 - beta)
53    alphas: Array1<f64>,
54
55    /// Cumulative product of alphas
56    alphas_cumprod: Array1<f64>,
57
58    /// Data dimension
59    data_dim: usize,
60
61    /// Number of qubits
62    num_qubits: usize,
63}
64
65impl QuantumDiffusionModel {
66    /// Create a new quantum diffusion model
67    pub fn new(
68        data_dim: usize,
69        num_qubits: usize,
70        num_timesteps: usize,
71        noise_schedule: NoiseSchedule,
72    ) -> Result<Self> {
73        // Create denoising quantum neural network
74        let layers = vec![
75            QNNLayerType::EncodingLayer {
76                num_features: data_dim + 1,
77            }, // +1 for timestep
78            QNNLayerType::VariationalLayer {
79                num_params: num_qubits * 3,
80            },
81            QNNLayerType::EntanglementLayer {
82                connectivity: "circular".to_string(),
83            },
84            QNNLayerType::VariationalLayer {
85                num_params: num_qubits * 3,
86            },
87            QNNLayerType::EntanglementLayer {
88                connectivity: "circular".to_string(),
89            },
90            QNNLayerType::VariationalLayer {
91                num_params: num_qubits * 3,
92            },
93            QNNLayerType::MeasurementLayer {
94                measurement_basis: "Pauli-Z".to_string(),
95            },
96        ];
97
98        let denoiser = QuantumNeuralNetwork::new(
99            layers,
100            num_qubits,
101            data_dim + 1, // Input includes timestep
102            data_dim,     // Output is denoised data
103        )?;
104
105        // Compute noise schedule
106        let (betas, alphas, alphas_cumprod) =
107            Self::compute_schedule(num_timesteps, &noise_schedule);
108
109        Ok(Self {
110            denoiser,
111            num_timesteps,
112            noise_schedule,
113            betas,
114            alphas,
115            alphas_cumprod,
116            data_dim,
117            num_qubits,
118        })
119    }
120
121    /// Compute noise schedule values
122    fn compute_schedule(
123        num_timesteps: usize,
124        schedule: &NoiseSchedule,
125    ) -> (Array1<f64>, Array1<f64>, Array1<f64>) {
126        let mut betas = Array1::zeros(num_timesteps);
127
128        match schedule {
129            NoiseSchedule::Linear {
130                beta_start,
131                beta_end,
132            } => {
133                for t in 0..num_timesteps {
134                    betas[t] = beta_start
135                        + (beta_end - beta_start) * t as f64 / (num_timesteps - 1) as f64;
136                }
137            }
138            NoiseSchedule::Cosine { s } => {
139                for t in 0..num_timesteps {
140                    let f_t = ((t as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
141                        .cos()
142                        .powi(2);
143                    let f_t_prev = if t == 0 {
144                        1.0
145                    } else {
146                        (((t - 1) as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
147                            .cos()
148                            .powi(2)
149                    };
150                    betas[t] = 1.0 - f_t / f_t_prev;
151                }
152            }
153            NoiseSchedule::Quadratic {
154                beta_start,
155                beta_end,
156            } => {
157                for t in 0..num_timesteps {
158                    let ratio = t as f64 / (num_timesteps - 1) as f64;
159                    betas[t] = beta_start + (beta_end - beta_start) * ratio * ratio;
160                }
161            }
162            NoiseSchedule::Sigmoid {
163                beta_start,
164                beta_end,
165            } => {
166                for t in 0..num_timesteps {
167                    let x = 10.0 * (t as f64 / (num_timesteps - 1) as f64 - 0.5);
168                    let sigmoid = 1.0 / (1.0 + (-x).exp());
169                    betas[t] = beta_start + (beta_end - beta_start) * sigmoid;
170                }
171            }
172        }
173
174        // Compute alphas and cumulative products
175        let alphas = 1.0 - &betas;
176        let mut alphas_cumprod = Array1::zeros(num_timesteps);
177        alphas_cumprod[0] = alphas[0];
178
179        for t in 1..num_timesteps {
180            alphas_cumprod[t] = alphas_cumprod[t - 1] * alphas[t];
181        }
182
183        (betas, alphas, alphas_cumprod)
184    }
185
186    /// Forward diffusion process: add noise to data
187    pub fn forward_diffusion(
188        &self,
189        x0: &Array1<f64>,
190        t: usize,
191    ) -> Result<(Array1<f64>, Array1<f64>)> {
192        if t >= self.num_timesteps {
193            return Err(MLError::ModelCreationError("Invalid timestep".to_string()));
194        }
195
196        // Sample noise
197        let noise = Array1::from_shape_fn(self.data_dim, |_| {
198            // Box-Muller transform for Gaussian noise
199            let u1 = thread_rng().gen::<f64>();
200            let u2 = thread_rng().gen::<f64>();
201            (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
202        });
203
204        // Add noise according to schedule
205        let sqrt_alpha_cumprod = self.alphas_cumprod[t].sqrt();
206        let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
207
208        let xt = sqrt_alpha_cumprod * x0 + sqrt_one_minus_alpha_cumprod * &noise;
209
210        Ok((xt, noise))
211    }
212
213    /// Predict noise from noisy data using quantum circuit
214    pub fn predict_noise(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
215        // Prepare input with timestep encoding
216        let mut input = Array1::zeros(self.data_dim + 1);
217        for i in 0..self.data_dim {
218            input[i] = xt[i];
219        }
220        input[self.data_dim] = t as f64 / self.num_timesteps as f64; // Normalized timestep
221
222        // Placeholder - would use quantum circuit to predict noise
223        let predicted_noise = self.extract_noise_prediction_placeholder()?;
224
225        Ok(predicted_noise)
226    }
227
228    /// Extract noise prediction from quantum state (placeholder)
229    fn extract_noise_prediction_placeholder(&self) -> Result<Array1<f64>> {
230        // Placeholder - would measure expectation values
231        let noise = Array1::from_shape_fn(self.data_dim, |_| 2.0 * thread_rng().gen::<f64>() - 1.0);
232        Ok(noise)
233    }
234
235    /// Reverse diffusion process: denoise step by step
236    pub fn reverse_diffusion_step(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
237        if t == 0 {
238            return Ok(xt.clone());
239        }
240
241        // Predict noise
242        let predicted_noise = self.predict_noise(xt, t)?;
243
244        // Compute denoising step
245        let beta_t = self.betas[t];
246        let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
247        let sqrt_recip_alpha = 1.0 / self.alphas[t].sqrt();
248
249        // Mean of reverse process
250        let mean =
251            sqrt_recip_alpha * (xt - beta_t / sqrt_one_minus_alpha_cumprod * &predicted_noise);
252
253        // Add noise for t > 1
254        let xt_prev = if t > 1 {
255            let noise_scale = beta_t.sqrt();
256            let noise = Array1::from_shape_fn(self.data_dim, |_| {
257                let u1 = thread_rng().gen::<f64>();
258                let u2 = thread_rng().gen::<f64>();
259                (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
260            });
261            mean + noise_scale * noise
262        } else {
263            mean
264        };
265
266        Ok(xt_prev)
267    }
268
269    /// Generate new samples
270    pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
271        let mut samples = Array2::zeros((num_samples, self.data_dim));
272
273        for sample_idx in 0..num_samples {
274            // Start from pure noise
275            let mut xt = Array1::from_shape_fn(self.data_dim, |_| {
276                let u1 = thread_rng().gen::<f64>();
277                let u2 = thread_rng().gen::<f64>();
278                (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
279            });
280
281            // Reverse diffusion
282            for t in (0..self.num_timesteps).rev() {
283                xt = self.reverse_diffusion_step(&xt, t)?;
284            }
285
286            // Store generated sample
287            samples.row_mut(sample_idx).assign(&xt);
288        }
289
290        Ok(samples)
291    }
292
293    /// Train the diffusion model
294    pub fn train(
295        &mut self,
296        data: &Array2<f64>,
297        optimizer: &mut dyn Optimizer,
298        epochs: usize,
299        batch_size: usize,
300    ) -> Result<Vec<f64>> {
301        let mut losses = Vec::new();
302        let num_samples = data.nrows();
303
304        for epoch in 0..epochs {
305            let mut epoch_loss = 0.0;
306            let mut num_batches = 0;
307
308            // Mini-batch training
309            for batch_start in (0..num_samples).step_by(batch_size) {
310                let batch_end = (batch_start + batch_size).min(num_samples);
311                let batch_data = data.slice(s![batch_start..batch_end, ..]);
312
313                let mut batch_loss = 0.0;
314
315                // Train on each sample in batch
316                for sample_idx in 0..batch_data.nrows() {
317                    let x0 = batch_data.row(sample_idx).to_owned();
318
319                    // Random timestep
320                    let t = fastrand::usize(0..self.num_timesteps);
321
322                    // Forward diffusion
323                    let (xt, true_noise) = self.forward_diffusion(&x0, t)?;
324
325                    // Predict noise
326                    let predicted_noise = self.predict_noise(&xt, t)?;
327
328                    // Compute loss (MSE between true and predicted noise)
329                    let noise_diff = &predicted_noise - &true_noise;
330                    let loss = noise_diff.mapv(|x| x * x).sum() / self.data_dim as f64;
331                    batch_loss += loss;
332                }
333
334                batch_loss /= batch_data.nrows() as f64;
335                epoch_loss += batch_loss;
336                num_batches += 1;
337
338                // Update parameters (placeholder)
339                self.update_parameters(optimizer, batch_loss)?;
340            }
341
342            epoch_loss /= num_batches as f64;
343            losses.push(epoch_loss);
344
345            if epoch % 10 == 0 {
346                println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
347            }
348        }
349
350        Ok(losses)
351    }
352
353    /// Update model parameters
354    fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
355        // Placeholder - would compute quantum gradients
356        Ok(())
357    }
358
359    /// Conditional generation given a condition
360    pub fn conditional_generate(
361        &self,
362        condition: &Array1<f64>,
363        num_samples: usize,
364    ) -> Result<Array2<f64>> {
365        // Placeholder for conditional generation
366        // Would modify the reverse process based on condition
367        self.generate(num_samples)
368    }
369
370    /// Get beta values
371    pub fn betas(&self) -> &Array1<f64> {
372        &self.betas
373    }
374
375    /// Get alpha cumulative product values
376    pub fn alphas_cumprod(&self) -> &Array1<f64> {
377        &self.alphas_cumprod
378    }
379}
380
381/// Quantum Score-Based Diffusion
382pub struct QuantumScoreDiffusion {
383    /// Score network (estimates gradient of log probability)
384    score_net: QuantumNeuralNetwork,
385
386    /// Noise levels for score matching
387    noise_levels: Array1<f64>,
388
389    /// Data dimension
390    data_dim: usize,
391}
392
393impl QuantumScoreDiffusion {
394    /// Create new score-based diffusion model
395    pub fn new(data_dim: usize, num_qubits: usize, num_noise_levels: usize) -> Result<Self> {
396        let layers = vec![
397            QNNLayerType::EncodingLayer {
398                num_features: data_dim + 1,
399            }, // +1 for noise level
400            QNNLayerType::VariationalLayer {
401                num_params: num_qubits * 4,
402            },
403            QNNLayerType::EntanglementLayer {
404                connectivity: "full".to_string(),
405            },
406            QNNLayerType::VariationalLayer {
407                num_params: num_qubits * 4,
408            },
409            QNNLayerType::MeasurementLayer {
410                measurement_basis: "Pauli-XYZ".to_string(),
411            },
412        ];
413
414        let score_net = QuantumNeuralNetwork::new(
415            layers,
416            num_qubits,
417            data_dim + 1,
418            data_dim, // Output is score (gradient)
419        )?;
420
421        // Geometric sequence of noise levels
422        let noise_levels = Array1::from_shape_fn(num_noise_levels, |i| {
423            0.01 * (10.0_f64).powf(i as f64 / (num_noise_levels - 1) as f64)
424        });
425
426        Ok(Self {
427            score_net,
428            noise_levels,
429            data_dim,
430        })
431    }
432
433    /// Estimate score (gradient of log density)
434    pub fn estimate_score(&self, x: &Array1<f64>, noise_level: f64) -> Result<Array1<f64>> {
435        // Prepare input with noise level
436        let mut input = Array1::zeros(self.data_dim + 1);
437        for i in 0..self.data_dim {
438            input[i] = x[i];
439        }
440        input[self.data_dim] = noise_level;
441
442        // Placeholder - would use quantum circuit to estimate score
443
444        // Placeholder - would extract gradient estimate
445        let score = Array1::from_shape_fn(self.data_dim, |_| 2.0 * thread_rng().gen::<f64>() - 1.0);
446
447        Ok(score)
448    }
449
450    /// Langevin dynamics sampling
451    pub fn langevin_sample(
452        &self,
453        init: Array1<f64>,
454        noise_level: f64,
455        num_steps: usize,
456        step_size: f64,
457    ) -> Result<Array1<f64>> {
458        let mut x = init;
459
460        for _ in 0..num_steps {
461            // Estimate score
462            let score = self.estimate_score(&x, noise_level)?;
463
464            // Langevin update
465            let noise = Array1::from_shape_fn(self.data_dim, |_| {
466                let u1 = thread_rng().gen::<f64>();
467                let u2 = thread_rng().gen::<f64>();
468                (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
469            });
470
471            x = &x + step_size * &score + (2.0 * step_size).sqrt() * noise;
472        }
473
474        Ok(x)
475    }
476
477    /// Get noise levels
478    pub fn noise_levels(&self) -> &Array1<f64> {
479        &self.noise_levels
480    }
481}
482
483/// Variational Diffusion Model with quantum components
484pub struct QuantumVariationalDiffusion {
485    /// Encoder network
486    encoder: QuantumNeuralNetwork,
487
488    /// Decoder network
489    decoder: QuantumNeuralNetwork,
490
491    /// Latent dimension
492    latent_dim: usize,
493
494    /// Data dimension
495    data_dim: usize,
496}
497
498impl QuantumVariationalDiffusion {
499    /// Create new variational diffusion model
500    pub fn new(data_dim: usize, latent_dim: usize, num_qubits: usize) -> Result<Self> {
501        // Encoder: data -> latent
502        let encoder_layers = vec![
503            QNNLayerType::EncodingLayer {
504                num_features: data_dim,
505            },
506            QNNLayerType::VariationalLayer {
507                num_params: num_qubits * 3,
508            },
509            QNNLayerType::EntanglementLayer {
510                connectivity: "circular".to_string(),
511            },
512            QNNLayerType::MeasurementLayer {
513                measurement_basis: "computational".to_string(),
514            },
515        ];
516
517        let encoder = QuantumNeuralNetwork::new(
518            encoder_layers,
519            num_qubits,
520            data_dim,
521            latent_dim * 2, // Mean and variance
522        )?;
523
524        // Decoder: latent -> data
525        let decoder_layers = vec![
526            QNNLayerType::EncodingLayer {
527                num_features: latent_dim,
528            },
529            QNNLayerType::VariationalLayer {
530                num_params: num_qubits * 3,
531            },
532            QNNLayerType::EntanglementLayer {
533                connectivity: "circular".to_string(),
534            },
535            QNNLayerType::MeasurementLayer {
536                measurement_basis: "Pauli-Z".to_string(),
537            },
538        ];
539
540        let decoder = QuantumNeuralNetwork::new(decoder_layers, num_qubits, latent_dim, data_dim)?;
541
542        Ok(Self {
543            encoder,
544            decoder,
545            latent_dim,
546            data_dim,
547        })
548    }
549
550    /// Encode data to latent space
551    pub fn encode(&self, x: &Array1<f64>) -> Result<(Array1<f64>, Array1<f64>)> {
552        // Placeholder - would run quantum encoder
553        let mean = Array1::zeros(self.latent_dim);
554        let log_var = Array1::zeros(self.latent_dim);
555        Ok((mean, log_var))
556    }
557
558    /// Decode from latent space
559    pub fn decode(&self, z: &Array1<f64>) -> Result<Array1<f64>> {
560        // Placeholder - would run quantum decoder
561        Ok(Array1::zeros(self.data_dim))
562    }
563}
564
565#[cfg(test)]
566mod tests {
567    use super::*;
568    use crate::autodiff::optimizers::Adam;
569
570    #[test]
571    fn test_noise_schedule() {
572        let num_timesteps = 100;
573        let schedule = NoiseSchedule::Linear {
574            beta_start: 0.0001,
575            beta_end: 0.02,
576        };
577
578        let (betas, alphas, alphas_cumprod) =
579            QuantumDiffusionModel::compute_schedule(num_timesteps, &schedule);
580
581        assert_eq!(betas.len(), num_timesteps);
582        assert!(betas[0] < betas[num_timesteps - 1]);
583        assert!(alphas_cumprod[0] > alphas_cumprod[num_timesteps - 1]);
584    }
585
586    #[test]
587    fn test_forward_diffusion() {
588        let model = QuantumDiffusionModel::new(
589            4,   // data_dim
590            4,   // num_qubits
591            100, // timesteps
592            NoiseSchedule::Linear {
593                beta_start: 0.0001,
594                beta_end: 0.02,
595            },
596        )
597        .unwrap();
598
599        let x0 = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
600        let (xt, noise) = model.forward_diffusion(&x0, 50).unwrap();
601
602        assert_eq!(xt.len(), 4);
603        assert_eq!(noise.len(), 4);
604    }
605
606    #[test]
607    fn test_generation() {
608        let model = QuantumDiffusionModel::new(
609            2,  // data_dim
610            4,  // num_qubits
611            50, // timesteps
612            NoiseSchedule::Cosine { s: 0.008 },
613        )
614        .unwrap();
615
616        let samples = model.generate(5).unwrap();
617        assert_eq!(samples.shape(), &[5, 2]);
618    }
619
620    #[test]
621    fn test_score_diffusion() {
622        let model = QuantumScoreDiffusion::new(
623            3,  // data_dim
624            4,  // num_qubits
625            10, // noise levels
626        )
627        .unwrap();
628
629        let x = Array1::from_vec(vec![0.1, 0.2, 0.3]);
630        let score = model.estimate_score(&x, 0.1).unwrap();
631
632        assert_eq!(score.len(), 3);
633    }
634}