1use crate::autodiff::optimizers::Optimizer;
8use scirs2_core::random::prelude::*;
9use crate::error::{MLError, Result};
10use crate::optimization::OptimizationMethod;
11use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
12use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1};
13use quantrs2_circuit::builder::{Circuit, Simulator};
14use quantrs2_core::gate::{
15 single::{RotationX, RotationY, RotationZ},
16 GateOp,
17};
18use quantrs2_sim::statevector::StateVectorSimulator;
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22#[derive(Debug, Clone, Copy)]
24pub enum NoiseSchedule {
25 Linear { beta_start: f64, beta_end: f64 },
27
28 Cosine { s: f64 },
30
31 Quadratic { beta_start: f64, beta_end: f64 },
33
34 Sigmoid { beta_start: f64, beta_end: f64 },
36}
37
38pub struct QuantumDiffusionModel {
40 denoiser: QuantumNeuralNetwork,
42
43 num_timesteps: usize,
45
46 noise_schedule: NoiseSchedule,
48
49 betas: Array1<f64>,
51
52 alphas: Array1<f64>,
54
55 alphas_cumprod: Array1<f64>,
57
58 data_dim: usize,
60
61 num_qubits: usize,
63}
64
65impl QuantumDiffusionModel {
66 pub fn new(
68 data_dim: usize,
69 num_qubits: usize,
70 num_timesteps: usize,
71 noise_schedule: NoiseSchedule,
72 ) -> Result<Self> {
73 let layers = vec![
75 QNNLayerType::EncodingLayer {
76 num_features: data_dim + 1,
77 }, QNNLayerType::VariationalLayer {
79 num_params: num_qubits * 3,
80 },
81 QNNLayerType::EntanglementLayer {
82 connectivity: "circular".to_string(),
83 },
84 QNNLayerType::VariationalLayer {
85 num_params: num_qubits * 3,
86 },
87 QNNLayerType::EntanglementLayer {
88 connectivity: "circular".to_string(),
89 },
90 QNNLayerType::VariationalLayer {
91 num_params: num_qubits * 3,
92 },
93 QNNLayerType::MeasurementLayer {
94 measurement_basis: "Pauli-Z".to_string(),
95 },
96 ];
97
98 let denoiser = QuantumNeuralNetwork::new(
99 layers,
100 num_qubits,
101 data_dim + 1, data_dim, )?;
104
105 let (betas, alphas, alphas_cumprod) =
107 Self::compute_schedule(num_timesteps, &noise_schedule);
108
109 Ok(Self {
110 denoiser,
111 num_timesteps,
112 noise_schedule,
113 betas,
114 alphas,
115 alphas_cumprod,
116 data_dim,
117 num_qubits,
118 })
119 }
120
121 fn compute_schedule(
123 num_timesteps: usize,
124 schedule: &NoiseSchedule,
125 ) -> (Array1<f64>, Array1<f64>, Array1<f64>) {
126 let mut betas = Array1::zeros(num_timesteps);
127
128 match schedule {
129 NoiseSchedule::Linear {
130 beta_start,
131 beta_end,
132 } => {
133 for t in 0..num_timesteps {
134 betas[t] = beta_start
135 + (beta_end - beta_start) * t as f64 / (num_timesteps - 1) as f64;
136 }
137 }
138 NoiseSchedule::Cosine { s } => {
139 for t in 0..num_timesteps {
140 let f_t = ((t as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
141 .cos()
142 .powi(2);
143 let f_t_prev = if t == 0 {
144 1.0
145 } else {
146 (((t - 1) as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
147 .cos()
148 .powi(2)
149 };
150 betas[t] = 1.0 - f_t / f_t_prev;
151 }
152 }
153 NoiseSchedule::Quadratic {
154 beta_start,
155 beta_end,
156 } => {
157 for t in 0..num_timesteps {
158 let ratio = t as f64 / (num_timesteps - 1) as f64;
159 betas[t] = beta_start + (beta_end - beta_start) * ratio * ratio;
160 }
161 }
162 NoiseSchedule::Sigmoid {
163 beta_start,
164 beta_end,
165 } => {
166 for t in 0..num_timesteps {
167 let x = 10.0 * (t as f64 / (num_timesteps - 1) as f64 - 0.5);
168 let sigmoid = 1.0 / (1.0 + (-x).exp());
169 betas[t] = beta_start + (beta_end - beta_start) * sigmoid;
170 }
171 }
172 }
173
174 let alphas = 1.0 - &betas;
176 let mut alphas_cumprod = Array1::zeros(num_timesteps);
177 alphas_cumprod[0] = alphas[0];
178
179 for t in 1..num_timesteps {
180 alphas_cumprod[t] = alphas_cumprod[t - 1] * alphas[t];
181 }
182
183 (betas, alphas, alphas_cumprod)
184 }
185
186 pub fn forward_diffusion(
188 &self,
189 x0: &Array1<f64>,
190 t: usize,
191 ) -> Result<(Array1<f64>, Array1<f64>)> {
192 if t >= self.num_timesteps {
193 return Err(MLError::ModelCreationError("Invalid timestep".to_string()));
194 }
195
196 let noise = Array1::from_shape_fn(self.data_dim, |_| {
198 let u1 = thread_rng().gen::<f64>();
200 let u2 = thread_rng().gen::<f64>();
201 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
202 });
203
204 let sqrt_alpha_cumprod = self.alphas_cumprod[t].sqrt();
206 let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
207
208 let xt = sqrt_alpha_cumprod * x0 + sqrt_one_minus_alpha_cumprod * &noise;
209
210 Ok((xt, noise))
211 }
212
213 pub fn predict_noise(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
215 let mut input = Array1::zeros(self.data_dim + 1);
217 for i in 0..self.data_dim {
218 input[i] = xt[i];
219 }
220 input[self.data_dim] = t as f64 / self.num_timesteps as f64; let predicted_noise = self.extract_noise_prediction_placeholder()?;
224
225 Ok(predicted_noise)
226 }
227
228 fn extract_noise_prediction_placeholder(&self) -> Result<Array1<f64>> {
230 let noise = Array1::from_shape_fn(self.data_dim, |_| 2.0 * thread_rng().gen::<f64>() - 1.0);
232 Ok(noise)
233 }
234
235 pub fn reverse_diffusion_step(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
237 if t == 0 {
238 return Ok(xt.clone());
239 }
240
241 let predicted_noise = self.predict_noise(xt, t)?;
243
244 let beta_t = self.betas[t];
246 let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
247 let sqrt_recip_alpha = 1.0 / self.alphas[t].sqrt();
248
249 let mean =
251 sqrt_recip_alpha * (xt - beta_t / sqrt_one_minus_alpha_cumprod * &predicted_noise);
252
253 let xt_prev = if t > 1 {
255 let noise_scale = beta_t.sqrt();
256 let noise = Array1::from_shape_fn(self.data_dim, |_| {
257 let u1 = thread_rng().gen::<f64>();
258 let u2 = thread_rng().gen::<f64>();
259 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
260 });
261 mean + noise_scale * noise
262 } else {
263 mean
264 };
265
266 Ok(xt_prev)
267 }
268
269 pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
271 let mut samples = Array2::zeros((num_samples, self.data_dim));
272
273 for sample_idx in 0..num_samples {
274 let mut xt = Array1::from_shape_fn(self.data_dim, |_| {
276 let u1 = thread_rng().gen::<f64>();
277 let u2 = thread_rng().gen::<f64>();
278 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
279 });
280
281 for t in (0..self.num_timesteps).rev() {
283 xt = self.reverse_diffusion_step(&xt, t)?;
284 }
285
286 samples.row_mut(sample_idx).assign(&xt);
288 }
289
290 Ok(samples)
291 }
292
293 pub fn train(
295 &mut self,
296 data: &Array2<f64>,
297 optimizer: &mut dyn Optimizer,
298 epochs: usize,
299 batch_size: usize,
300 ) -> Result<Vec<f64>> {
301 let mut losses = Vec::new();
302 let num_samples = data.nrows();
303
304 for epoch in 0..epochs {
305 let mut epoch_loss = 0.0;
306 let mut num_batches = 0;
307
308 for batch_start in (0..num_samples).step_by(batch_size) {
310 let batch_end = (batch_start + batch_size).min(num_samples);
311 let batch_data = data.slice(s![batch_start..batch_end, ..]);
312
313 let mut batch_loss = 0.0;
314
315 for sample_idx in 0..batch_data.nrows() {
317 let x0 = batch_data.row(sample_idx).to_owned();
318
319 let t = fastrand::usize(0..self.num_timesteps);
321
322 let (xt, true_noise) = self.forward_diffusion(&x0, t)?;
324
325 let predicted_noise = self.predict_noise(&xt, t)?;
327
328 let noise_diff = &predicted_noise - &true_noise;
330 let loss = noise_diff.mapv(|x| x * x).sum() / self.data_dim as f64;
331 batch_loss += loss;
332 }
333
334 batch_loss /= batch_data.nrows() as f64;
335 epoch_loss += batch_loss;
336 num_batches += 1;
337
338 self.update_parameters(optimizer, batch_loss)?;
340 }
341
342 epoch_loss /= num_batches as f64;
343 losses.push(epoch_loss);
344
345 if epoch % 10 == 0 {
346 println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
347 }
348 }
349
350 Ok(losses)
351 }
352
353 fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
355 Ok(())
357 }
358
359 pub fn conditional_generate(
361 &self,
362 condition: &Array1<f64>,
363 num_samples: usize,
364 ) -> Result<Array2<f64>> {
365 self.generate(num_samples)
368 }
369
370 pub fn betas(&self) -> &Array1<f64> {
372 &self.betas
373 }
374
375 pub fn alphas_cumprod(&self) -> &Array1<f64> {
377 &self.alphas_cumprod
378 }
379}
380
381pub struct QuantumScoreDiffusion {
383 score_net: QuantumNeuralNetwork,
385
386 noise_levels: Array1<f64>,
388
389 data_dim: usize,
391}
392
393impl QuantumScoreDiffusion {
394 pub fn new(data_dim: usize, num_qubits: usize, num_noise_levels: usize) -> Result<Self> {
396 let layers = vec![
397 QNNLayerType::EncodingLayer {
398 num_features: data_dim + 1,
399 }, QNNLayerType::VariationalLayer {
401 num_params: num_qubits * 4,
402 },
403 QNNLayerType::EntanglementLayer {
404 connectivity: "full".to_string(),
405 },
406 QNNLayerType::VariationalLayer {
407 num_params: num_qubits * 4,
408 },
409 QNNLayerType::MeasurementLayer {
410 measurement_basis: "Pauli-XYZ".to_string(),
411 },
412 ];
413
414 let score_net = QuantumNeuralNetwork::new(
415 layers,
416 num_qubits,
417 data_dim + 1,
418 data_dim, )?;
420
421 let noise_levels = Array1::from_shape_fn(num_noise_levels, |i| {
423 0.01 * (10.0_f64).powf(i as f64 / (num_noise_levels - 1) as f64)
424 });
425
426 Ok(Self {
427 score_net,
428 noise_levels,
429 data_dim,
430 })
431 }
432
433 pub fn estimate_score(&self, x: &Array1<f64>, noise_level: f64) -> Result<Array1<f64>> {
435 let mut input = Array1::zeros(self.data_dim + 1);
437 for i in 0..self.data_dim {
438 input[i] = x[i];
439 }
440 input[self.data_dim] = noise_level;
441
442 let score = Array1::from_shape_fn(self.data_dim, |_| 2.0 * thread_rng().gen::<f64>() - 1.0);
446
447 Ok(score)
448 }
449
450 pub fn langevin_sample(
452 &self,
453 init: Array1<f64>,
454 noise_level: f64,
455 num_steps: usize,
456 step_size: f64,
457 ) -> Result<Array1<f64>> {
458 let mut x = init;
459
460 for _ in 0..num_steps {
461 let score = self.estimate_score(&x, noise_level)?;
463
464 let noise = Array1::from_shape_fn(self.data_dim, |_| {
466 let u1 = thread_rng().gen::<f64>();
467 let u2 = thread_rng().gen::<f64>();
468 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
469 });
470
471 x = &x + step_size * &score + (2.0 * step_size).sqrt() * noise;
472 }
473
474 Ok(x)
475 }
476
477 pub fn noise_levels(&self) -> &Array1<f64> {
479 &self.noise_levels
480 }
481}
482
483pub struct QuantumVariationalDiffusion {
485 encoder: QuantumNeuralNetwork,
487
488 decoder: QuantumNeuralNetwork,
490
491 latent_dim: usize,
493
494 data_dim: usize,
496}
497
498impl QuantumVariationalDiffusion {
499 pub fn new(data_dim: usize, latent_dim: usize, num_qubits: usize) -> Result<Self> {
501 let encoder_layers = vec![
503 QNNLayerType::EncodingLayer {
504 num_features: data_dim,
505 },
506 QNNLayerType::VariationalLayer {
507 num_params: num_qubits * 3,
508 },
509 QNNLayerType::EntanglementLayer {
510 connectivity: "circular".to_string(),
511 },
512 QNNLayerType::MeasurementLayer {
513 measurement_basis: "computational".to_string(),
514 },
515 ];
516
517 let encoder = QuantumNeuralNetwork::new(
518 encoder_layers,
519 num_qubits,
520 data_dim,
521 latent_dim * 2, )?;
523
524 let decoder_layers = vec![
526 QNNLayerType::EncodingLayer {
527 num_features: latent_dim,
528 },
529 QNNLayerType::VariationalLayer {
530 num_params: num_qubits * 3,
531 },
532 QNNLayerType::EntanglementLayer {
533 connectivity: "circular".to_string(),
534 },
535 QNNLayerType::MeasurementLayer {
536 measurement_basis: "Pauli-Z".to_string(),
537 },
538 ];
539
540 let decoder = QuantumNeuralNetwork::new(decoder_layers, num_qubits, latent_dim, data_dim)?;
541
542 Ok(Self {
543 encoder,
544 decoder,
545 latent_dim,
546 data_dim,
547 })
548 }
549
550 pub fn encode(&self, x: &Array1<f64>) -> Result<(Array1<f64>, Array1<f64>)> {
552 let mean = Array1::zeros(self.latent_dim);
554 let log_var = Array1::zeros(self.latent_dim);
555 Ok((mean, log_var))
556 }
557
558 pub fn decode(&self, z: &Array1<f64>) -> Result<Array1<f64>> {
560 Ok(Array1::zeros(self.data_dim))
562 }
563}
564
565#[cfg(test)]
566mod tests {
567 use super::*;
568 use crate::autodiff::optimizers::Adam;
569
570 #[test]
571 fn test_noise_schedule() {
572 let num_timesteps = 100;
573 let schedule = NoiseSchedule::Linear {
574 beta_start: 0.0001,
575 beta_end: 0.02,
576 };
577
578 let (betas, alphas, alphas_cumprod) =
579 QuantumDiffusionModel::compute_schedule(num_timesteps, &schedule);
580
581 assert_eq!(betas.len(), num_timesteps);
582 assert!(betas[0] < betas[num_timesteps - 1]);
583 assert!(alphas_cumprod[0] > alphas_cumprod[num_timesteps - 1]);
584 }
585
586 #[test]
587 fn test_forward_diffusion() {
588 let model = QuantumDiffusionModel::new(
589 4, 4, 100, NoiseSchedule::Linear {
593 beta_start: 0.0001,
594 beta_end: 0.02,
595 },
596 )
597 .unwrap();
598
599 let x0 = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
600 let (xt, noise) = model.forward_diffusion(&x0, 50).unwrap();
601
602 assert_eq!(xt.len(), 4);
603 assert_eq!(noise.len(), 4);
604 }
605
606 #[test]
607 fn test_generation() {
608 let model = QuantumDiffusionModel::new(
609 2, 4, 50, NoiseSchedule::Cosine { s: 0.008 },
613 )
614 .unwrap();
615
616 let samples = model.generate(5).unwrap();
617 assert_eq!(samples.shape(), &[5, 2]);
618 }
619
620 #[test]
621 fn test_score_diffusion() {
622 let model = QuantumScoreDiffusion::new(
623 3, 4, 10, )
627 .unwrap();
628
629 let x = Array1::from_vec(vec![0.1, 0.2, 0.3]);
630 let score = model.estimate_score(&x, 0.1).unwrap();
631
632 assert_eq!(score.len(), 3);
633 }
634}