pub struct QuantumTransformerConfig {
pub model_dim: usize,
pub num_heads: usize,
pub ff_dim: usize,
pub num_layers: usize,
pub max_seq_len: usize,
pub num_qubits: usize,
pub dropout_rate: f64,
pub attention_type: QuantumAttentionType,
pub position_encoding: PositionEncodingType,
}Expand description
Quantum transformer model configuration
Fields§
§model_dim: usizeModel dimension (d_model)
num_heads: usizeNumber of attention heads
ff_dim: usizeFeedforward dimension
num_layers: usizeNumber of transformer layers
max_seq_len: usizeMaximum sequence length
num_qubits: usizeNumber of qubits for quantum computation
dropout_rate: f64Dropout rate
attention_type: QuantumAttentionTypeAttention mechanism type
position_encoding: PositionEncodingTypePosition encoding type
Implementations§
Source§impl QuantumTransformerConfig
impl QuantumTransformerConfig
Sourcepub fn default() -> Self
pub fn default() -> Self
Create default transformer configuration
Examples found in repository?
examples/quantum_transformer.rs (line 73)
62fn config_demo() -> Result<()> {
63 println!(" Creating various transformer configurations...");
64
65 // Small efficient model
66 let small_config = QuantumTransformerConfig::small();
67 println!(
68 " Small model: {} params, {} heads, {} layers",
69 small_config.model_dim, small_config.num_heads, small_config.num_layers
70 );
71
72 // Standard model
73 let default_config = QuantumTransformerConfig::default();
74 println!(
75 " Default model: {} params, {} heads, {} layers",
76 default_config.model_dim, default_config.num_heads, default_config.num_layers
77 );
78
79 // Large model
80 let large_config = QuantumTransformerConfig::large();
81 println!(
82 " Large model: {} params, {} heads, {} layers",
83 large_config.model_dim, large_config.num_heads, large_config.num_layers
84 );
85
86 // Custom configuration
87 let custom_config = QuantumTransformerConfig {
88 model_dim: 384,
89 num_heads: 6,
90 ff_dim: 1536,
91 num_layers: 8,
92 max_seq_len: 1024,
93 num_qubits: 12,
94 dropout_rate: 0.15,
95 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
96 position_encoding: PositionEncodingType::Rotary,
97 };
98
99 println!(
100 " Custom model: {} dim, {} qubits, {:?} attention",
101 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
102 );
103
104 // Create transformer with custom config
105 let transformer = QuantumTransformer::new(custom_config)?;
106 println!(
107 " Created transformer with {} total parameters",
108 transformer.num_parameters()
109 );
110
111 Ok(())
112}Sourcepub fn large() -> Self
pub fn large() -> Self
Create configuration for large model
Examples found in repository?
examples/quantum_transformer.rs (line 80)
62fn config_demo() -> Result<()> {
63 println!(" Creating various transformer configurations...");
64
65 // Small efficient model
66 let small_config = QuantumTransformerConfig::small();
67 println!(
68 " Small model: {} params, {} heads, {} layers",
69 small_config.model_dim, small_config.num_heads, small_config.num_layers
70 );
71
72 // Standard model
73 let default_config = QuantumTransformerConfig::default();
74 println!(
75 " Default model: {} params, {} heads, {} layers",
76 default_config.model_dim, default_config.num_heads, default_config.num_layers
77 );
78
79 // Large model
80 let large_config = QuantumTransformerConfig::large();
81 println!(
82 " Large model: {} params, {} heads, {} layers",
83 large_config.model_dim, large_config.num_heads, large_config.num_layers
84 );
85
86 // Custom configuration
87 let custom_config = QuantumTransformerConfig {
88 model_dim: 384,
89 num_heads: 6,
90 ff_dim: 1536,
91 num_layers: 8,
92 max_seq_len: 1024,
93 num_qubits: 12,
94 dropout_rate: 0.15,
95 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
96 position_encoding: PositionEncodingType::Rotary,
97 };
98
99 println!(
100 " Custom model: {} dim, {} qubits, {:?} attention",
101 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
102 );
103
104 // Create transformer with custom config
105 let transformer = QuantumTransformer::new(custom_config)?;
106 println!(
107 " Created transformer with {} total parameters",
108 transformer.num_parameters()
109 );
110
111 Ok(())
112}Sourcepub fn small() -> Self
pub fn small() -> Self
Create configuration for small/efficient model
Examples found in repository?
examples/quantum_transformer.rs (line 66)
62fn config_demo() -> Result<()> {
63 println!(" Creating various transformer configurations...");
64
65 // Small efficient model
66 let small_config = QuantumTransformerConfig::small();
67 println!(
68 " Small model: {} params, {} heads, {} layers",
69 small_config.model_dim, small_config.num_heads, small_config.num_layers
70 );
71
72 // Standard model
73 let default_config = QuantumTransformerConfig::default();
74 println!(
75 " Default model: {} params, {} heads, {} layers",
76 default_config.model_dim, default_config.num_heads, default_config.num_layers
77 );
78
79 // Large model
80 let large_config = QuantumTransformerConfig::large();
81 println!(
82 " Large model: {} params, {} heads, {} layers",
83 large_config.model_dim, large_config.num_heads, large_config.num_layers
84 );
85
86 // Custom configuration
87 let custom_config = QuantumTransformerConfig {
88 model_dim: 384,
89 num_heads: 6,
90 ff_dim: 1536,
91 num_layers: 8,
92 max_seq_len: 1024,
93 num_qubits: 12,
94 dropout_rate: 0.15,
95 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
96 position_encoding: PositionEncodingType::Rotary,
97 };
98
99 println!(
100 " Custom model: {} dim, {} qubits, {:?} attention",
101 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
102 );
103
104 // Create transformer with custom config
105 let transformer = QuantumTransformer::new(custom_config)?;
106 println!(
107 " Created transformer with {} total parameters",
108 transformer.num_parameters()
109 );
110
111 Ok(())
112}Trait Implementations§
Source§impl Clone for QuantumTransformerConfig
impl Clone for QuantumTransformerConfig
Source§fn clone(&self) -> QuantumTransformerConfig
fn clone(&self) -> QuantumTransformerConfig
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumTransformerConfig
impl RefUnwindSafe for QuantumTransformerConfig
impl Send for QuantumTransformerConfig
impl Sync for QuantumTransformerConfig
impl Unpin for QuantumTransformerConfig
impl UnwindSafe for QuantumTransformerConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.