pub struct QuantumMLErrorMitigator {
pub mitigation_strategy: MitigationStrategy,
pub noise_model: NoiseModel,
pub calibration_data: CalibrationData,
pub adaptive_config: AdaptiveConfig,
pub performance_metrics: PerformanceMetrics,
}Expand description
Advanced error mitigation framework for quantum ML
Fields§
§mitigation_strategy: MitigationStrategy§noise_model: NoiseModel§calibration_data: CalibrationData§adaptive_config: AdaptiveConfig§performance_metrics: PerformanceMetricsImplementations§
Source§impl QuantumMLErrorMitigator
impl QuantumMLErrorMitigator
Sourcepub fn new(
mitigation_strategy: MitigationStrategy,
noise_model: NoiseModel,
) -> Result<Self>
pub fn new( mitigation_strategy: MitigationStrategy, noise_model: NoiseModel, ) -> Result<Self>
Create a new error mitigation framework
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 108)
27fn main() -> Result<()> {
28 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30 // Step 1: Initialize noise model and calibration data
31 println!("1. Setting up noise model and calibration data...");
32
33 let noise_model = create_realistic_noise_model()?;
34 println!(
35 " - Noise model configured with {} gate types",
36 noise_model.gate_errors.len()
37 );
38 println!(
39 " - Average gate error rate: {:.4}",
40 calculate_average_error_rate(&noise_model)
41 );
42 println!(
43 " - Measurement fidelity: {:.3}",
44 noise_model.measurement_errors.readout_fidelity
45 );
46
47 // Step 2: Create different mitigation strategies
48 println!("\n2. Creating error mitigation strategies...");
49
50 let strategies = create_mitigation_strategies()?;
51 println!(
52 " - Created {} different mitigation strategies",
53 strategies.len()
54 );
55
56 for (i, strategy) in strategies.iter().enumerate() {
57 println!(" {}. {}", i + 1, get_strategy_name(strategy));
58 }
59
60 // Step 3: Initialize quantum ML circuit for testing
61 println!("\n3. Initializing quantum ML circuit...");
62
63 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66 println!(
67 " - Circuit: {} qubits, {} parameters",
68 test_circuit.num_qubits(),
69 initial_parameters.len()
70 );
71 println!(
72 " - Circuit depth: approximately {} gates",
73 estimate_circuit_depth(&test_circuit)
74 );
75
76 // Step 4: Simulate noisy measurements
77 println!("\n4. Simulating noisy quantum measurements...");
78
79 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80 let noisy_gradients =
81 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83 println!(
84 " - Generated {} measurement shots",
85 noisy_measurements.nrows()
86 );
87 println!(
88 " - Noise level in measurements: {:.3}",
89 assess_noise_level(&noisy_measurements)
90 );
91 println!(
92 " - Gradient noise standard deviation: {:.4}",
93 noisy_gradients.std(0.0)
94 );
95
96 // Step 5: Apply different mitigation strategies
97 println!("\n5. Applying different error mitigation strategies...");
98
99 let mut mitigation_results = Vec::new();
100
101 for (strategy_idx, strategy) in strategies.iter().enumerate() {
102 println!(
103 " Testing strategy {}: {}",
104 strategy_idx + 1,
105 get_strategy_name(strategy)
106 );
107
108 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110 let mitigated_data = mitigator.mitigate_training_errors(
111 &test_circuit,
112 &initial_parameters,
113 &noisy_measurements,
114 &noisy_gradients,
115 )?;
116
117 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118 println!(
119 " - Measurement improvement: {:.1}%",
120 improvement * 100.0
121 );
122 println!(
123 " - Confidence score: {:.3}",
124 mitigated_data.confidence_scores.mean().unwrap()
125 );
126 println!(
127 " - Mitigation overhead: {:.1}%",
128 mitigated_data.mitigation_overhead * 100.0
129 );
130
131 mitigation_results.push((strategy_idx, improvement, mitigated_data));
132 }
133
134 // Step 6: Compare mitigation effectiveness
135 println!("\n6. Comparing mitigation effectiveness...");
136
137 let mut sorted_results = mitigation_results.clone();
138 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140 println!(" Ranking by improvement:");
141 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142 println!(
143 " {}. {}: {:.1}% improvement",
144 rank + 1,
145 get_strategy_name(&strategies[*strategy_idx]),
146 improvement * 100.0
147 );
148 }
149
150 // Step 7: Demonstrate adaptive mitigation
151 println!("\n7. Demonstrating adaptive error mitigation...");
152
153 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154 strategies: strategies.clone(),
155 selection_policy: create_smart_selection_policy()?,
156 performance_tracker: create_performance_tracker()?,
157 };
158
159 let mut adaptive_mitigator =
160 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162 // Simulate training loop with adaptive mitigation
163 println!(" Simulating training with adaptive mitigation:");
164 let num_training_steps = 10;
165 let mut training_history = Vec::new();
166
167 for step in 0..num_training_steps {
168 // Simulate changing noise conditions
169 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170 adaptive_mitigator.noise_model = dynamic_noise;
171
172 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176 &test_circuit,
177 &initial_parameters,
178 &step_measurements,
179 &step_gradients,
180 )?;
181
182 let step_improvement =
183 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184 training_history.push(step_improvement);
185
186 if step % 3 == 0 {
187 println!(
188 " Step {}: {:.1}% improvement, confidence: {:.3}",
189 step + 1,
190 step_improvement * 100.0,
191 mitigated_step.confidence_scores.mean().unwrap()
192 );
193 }
194 }
195
196 let avg_adaptive_improvement =
197 training_history.iter().sum::<f64>() / training_history.len() as f64;
198 println!(
199 " Average adaptive improvement: {:.1}%",
200 avg_adaptive_improvement * 100.0
201 );
202
203 // Step 8: Demonstrate specialized mitigation techniques
204 println!("\n8. Demonstrating specialized mitigation techniques...");
205
206 // Zero Noise Extrapolation
207 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208 println!(" Zero Noise Extrapolation:");
209 println!(
210 " - Extrapolated fidelity: {:.4}",
211 zne_demo.extrapolated_fidelity
212 );
213 println!(
214 " - Confidence interval: [{:.4}, {:.4}]",
215 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216 );
217
218 // Readout Error Mitigation
219 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220 println!(" Readout Error Mitigation:");
221 println!(
222 " - Correction accuracy: {:.1}%",
223 readout_demo.correction_accuracy * 100.0
224 );
225 println!(
226 " - Assignment matrix condition number: {:.2}",
227 readout_demo.condition_number
228 );
229
230 // Clifford Data Regression
231 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232 println!(" Clifford Data Regression:");
233 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
234 println!(
235 " - Prediction accuracy: {:.1}%",
236 cdr_demo.prediction_accuracy * 100.0
237 );
238
239 // Virtual Distillation
240 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241 println!(" Virtual Distillation:");
242 println!(
243 " - Distillation fidelity: {:.4}",
244 vd_demo.distillation_fidelity
245 );
246 println!(
247 " - Resource overhead: {:.1}x",
248 vd_demo.resource_overhead
249 );
250
251 // Step 9: ML-based error mitigation
252 println!("\n9. Demonstrating ML-based error mitigation...");
253
254 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255 println!(" Machine Learning-based Mitigation:");
256 println!(
257 " - Neural network accuracy: {:.1}%",
258 ml_mitigation_demo.nn_accuracy * 100.0
259 );
260 println!(
261 " - Noise prediction MSE: {:.6}",
262 ml_mitigation_demo.prediction_mse
263 );
264 println!(
265 " - Correction effectiveness: {:.1}%",
266 ml_mitigation_demo.correction_effectiveness * 100.0
267 );
268
269 // Step 10: Real-time adaptive mitigation
270 println!("\n10. Real-time adaptive mitigation simulation...");
271
272 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273 println!(" Real-time Adaptation Results:");
274 println!(
275 " - Response time: {:.1} ms",
276 realtime_results.response_time_ms
277 );
278 println!(
279 " - Adaptation accuracy: {:.1}%",
280 realtime_results.adaptation_accuracy * 100.0
281 );
282 println!(
283 " - Overall performance gain: {:.1}%",
284 realtime_results.performance_gain * 100.0
285 );
286
287 // Step 11: Error mitigation for inference
288 println!("\n11. Error mitigation for quantum ML inference...");
289
290 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292 let best_strategy = &strategies[sorted_results[0].0];
293 let mut inference_mitigator =
294 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296 let mitigated_inference =
297 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299 println!(" Inference Mitigation Results:");
300 println!(
301 " - Uncertainty reduction: {:.1}%",
302 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303 );
304 println!(
305 " - Reliability score: {:.3}",
306 mitigated_inference.reliability_score
307 );
308 println!(
309 " - Prediction confidence: {:.1}%",
310 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311 );
312
313 // Step 12: Performance and resource analysis
314 println!("\n12. Performance and resource analysis...");
315
316 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317 println!(" Resource Analysis:");
318 println!(
319 " - Average computational overhead: {:.1}x",
320 resource_analysis.avg_computational_overhead
321 );
322 println!(
323 " - Memory usage increase: {:.1}%",
324 resource_analysis.memory_overhead * 100.0
325 );
326 println!(
327 " - Classical processing time: {:.2} ms",
328 resource_analysis.classical_time_ms
329 );
330 println!(
331 " - Quantum circuit overhead: {:.1}%",
332 resource_analysis.quantum_overhead * 100.0
333 );
334
335 // Step 13: Quantum advantage analysis with error mitigation
336 println!("\n13. Quantum advantage analysis with error mitigation...");
337
338 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339 &test_circuit,
340 &sorted_results[0].2, // Best mitigation result
341 )?;
342
343 println!(" Quantum Advantage Analysis:");
344 println!(
345 " - Effective quantum volume: {}",
346 quantum_advantage.effective_quantum_volume
347 );
348 println!(
349 " - Noise-mitigated fidelity: {:.4}",
350 quantum_advantage.mitigated_fidelity
351 );
352 println!(
353 " - Classical simulation cost: {:.1}x harder",
354 quantum_advantage.classical_simulation_cost
355 );
356 println!(
357 " - Practical quantum advantage: {}",
358 if quantum_advantage.practical_advantage {
359 "Yes"
360 } else {
361 "Not yet"
362 }
363 );
364
365 // Step 14: Generate comprehensive report
366 println!("\n14. Generating comprehensive error mitigation report...");
367
368 let comprehensive_report = generate_comprehensive_mitigation_report(
369 &strategies,
370 &mitigation_results,
371 &training_history,
372 &resource_analysis,
373 &quantum_advantage,
374 )?;
375
376 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377 println!(" Comprehensive report saved to: error_mitigation_report.html");
378
379 // Step 15: Future recommendations
380 println!("\n15. Error mitigation recommendations...");
381
382 let recommendations =
383 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385 println!(" Recommendations:");
386 for (i, recommendation) in recommendations.iter().enumerate() {
387 println!(" {}. {}", i + 1, recommendation);
388 }
389
390 println!("\n=== Advanced Error Mitigation Demo Complete ===");
391 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392 println!("📊 All mitigation strategies evaluated and optimized");
393 println!("🚀 Quantum ML error mitigation framework ready for production");
394
395 Ok(())
396}Sourcepub fn mitigate_training_errors(
&mut self,
circuit: &QuantumCircuit,
parameters: &Array1<f64>,
measurement_results: &Array2<f64>,
gradient_estimates: &Array1<f64>,
) -> Result<MitigatedTrainingData>
pub fn mitigate_training_errors( &mut self, circuit: &QuantumCircuit, parameters: &Array1<f64>, measurement_results: &Array2<f64>, gradient_estimates: &Array1<f64>, ) -> Result<MitigatedTrainingData>
Apply error mitigation to quantum ML training
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (lines 110-115)
27fn main() -> Result<()> {
28 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30 // Step 1: Initialize noise model and calibration data
31 println!("1. Setting up noise model and calibration data...");
32
33 let noise_model = create_realistic_noise_model()?;
34 println!(
35 " - Noise model configured with {} gate types",
36 noise_model.gate_errors.len()
37 );
38 println!(
39 " - Average gate error rate: {:.4}",
40 calculate_average_error_rate(&noise_model)
41 );
42 println!(
43 " - Measurement fidelity: {:.3}",
44 noise_model.measurement_errors.readout_fidelity
45 );
46
47 // Step 2: Create different mitigation strategies
48 println!("\n2. Creating error mitigation strategies...");
49
50 let strategies = create_mitigation_strategies()?;
51 println!(
52 " - Created {} different mitigation strategies",
53 strategies.len()
54 );
55
56 for (i, strategy) in strategies.iter().enumerate() {
57 println!(" {}. {}", i + 1, get_strategy_name(strategy));
58 }
59
60 // Step 3: Initialize quantum ML circuit for testing
61 println!("\n3. Initializing quantum ML circuit...");
62
63 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66 println!(
67 " - Circuit: {} qubits, {} parameters",
68 test_circuit.num_qubits(),
69 initial_parameters.len()
70 );
71 println!(
72 " - Circuit depth: approximately {} gates",
73 estimate_circuit_depth(&test_circuit)
74 );
75
76 // Step 4: Simulate noisy measurements
77 println!("\n4. Simulating noisy quantum measurements...");
78
79 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80 let noisy_gradients =
81 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83 println!(
84 " - Generated {} measurement shots",
85 noisy_measurements.nrows()
86 );
87 println!(
88 " - Noise level in measurements: {:.3}",
89 assess_noise_level(&noisy_measurements)
90 );
91 println!(
92 " - Gradient noise standard deviation: {:.4}",
93 noisy_gradients.std(0.0)
94 );
95
96 // Step 5: Apply different mitigation strategies
97 println!("\n5. Applying different error mitigation strategies...");
98
99 let mut mitigation_results = Vec::new();
100
101 for (strategy_idx, strategy) in strategies.iter().enumerate() {
102 println!(
103 " Testing strategy {}: {}",
104 strategy_idx + 1,
105 get_strategy_name(strategy)
106 );
107
108 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110 let mitigated_data = mitigator.mitigate_training_errors(
111 &test_circuit,
112 &initial_parameters,
113 &noisy_measurements,
114 &noisy_gradients,
115 )?;
116
117 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118 println!(
119 " - Measurement improvement: {:.1}%",
120 improvement * 100.0
121 );
122 println!(
123 " - Confidence score: {:.3}",
124 mitigated_data.confidence_scores.mean().unwrap()
125 );
126 println!(
127 " - Mitigation overhead: {:.1}%",
128 mitigated_data.mitigation_overhead * 100.0
129 );
130
131 mitigation_results.push((strategy_idx, improvement, mitigated_data));
132 }
133
134 // Step 6: Compare mitigation effectiveness
135 println!("\n6. Comparing mitigation effectiveness...");
136
137 let mut sorted_results = mitigation_results.clone();
138 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140 println!(" Ranking by improvement:");
141 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142 println!(
143 " {}. {}: {:.1}% improvement",
144 rank + 1,
145 get_strategy_name(&strategies[*strategy_idx]),
146 improvement * 100.0
147 );
148 }
149
150 // Step 7: Demonstrate adaptive mitigation
151 println!("\n7. Demonstrating adaptive error mitigation...");
152
153 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154 strategies: strategies.clone(),
155 selection_policy: create_smart_selection_policy()?,
156 performance_tracker: create_performance_tracker()?,
157 };
158
159 let mut adaptive_mitigator =
160 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162 // Simulate training loop with adaptive mitigation
163 println!(" Simulating training with adaptive mitigation:");
164 let num_training_steps = 10;
165 let mut training_history = Vec::new();
166
167 for step in 0..num_training_steps {
168 // Simulate changing noise conditions
169 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170 adaptive_mitigator.noise_model = dynamic_noise;
171
172 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176 &test_circuit,
177 &initial_parameters,
178 &step_measurements,
179 &step_gradients,
180 )?;
181
182 let step_improvement =
183 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184 training_history.push(step_improvement);
185
186 if step % 3 == 0 {
187 println!(
188 " Step {}: {:.1}% improvement, confidence: {:.3}",
189 step + 1,
190 step_improvement * 100.0,
191 mitigated_step.confidence_scores.mean().unwrap()
192 );
193 }
194 }
195
196 let avg_adaptive_improvement =
197 training_history.iter().sum::<f64>() / training_history.len() as f64;
198 println!(
199 " Average adaptive improvement: {:.1}%",
200 avg_adaptive_improvement * 100.0
201 );
202
203 // Step 8: Demonstrate specialized mitigation techniques
204 println!("\n8. Demonstrating specialized mitigation techniques...");
205
206 // Zero Noise Extrapolation
207 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208 println!(" Zero Noise Extrapolation:");
209 println!(
210 " - Extrapolated fidelity: {:.4}",
211 zne_demo.extrapolated_fidelity
212 );
213 println!(
214 " - Confidence interval: [{:.4}, {:.4}]",
215 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216 );
217
218 // Readout Error Mitigation
219 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220 println!(" Readout Error Mitigation:");
221 println!(
222 " - Correction accuracy: {:.1}%",
223 readout_demo.correction_accuracy * 100.0
224 );
225 println!(
226 " - Assignment matrix condition number: {:.2}",
227 readout_demo.condition_number
228 );
229
230 // Clifford Data Regression
231 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232 println!(" Clifford Data Regression:");
233 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
234 println!(
235 " - Prediction accuracy: {:.1}%",
236 cdr_demo.prediction_accuracy * 100.0
237 );
238
239 // Virtual Distillation
240 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241 println!(" Virtual Distillation:");
242 println!(
243 " - Distillation fidelity: {:.4}",
244 vd_demo.distillation_fidelity
245 );
246 println!(
247 " - Resource overhead: {:.1}x",
248 vd_demo.resource_overhead
249 );
250
251 // Step 9: ML-based error mitigation
252 println!("\n9. Demonstrating ML-based error mitigation...");
253
254 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255 println!(" Machine Learning-based Mitigation:");
256 println!(
257 " - Neural network accuracy: {:.1}%",
258 ml_mitigation_demo.nn_accuracy * 100.0
259 );
260 println!(
261 " - Noise prediction MSE: {:.6}",
262 ml_mitigation_demo.prediction_mse
263 );
264 println!(
265 " - Correction effectiveness: {:.1}%",
266 ml_mitigation_demo.correction_effectiveness * 100.0
267 );
268
269 // Step 10: Real-time adaptive mitigation
270 println!("\n10. Real-time adaptive mitigation simulation...");
271
272 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273 println!(" Real-time Adaptation Results:");
274 println!(
275 " - Response time: {:.1} ms",
276 realtime_results.response_time_ms
277 );
278 println!(
279 " - Adaptation accuracy: {:.1}%",
280 realtime_results.adaptation_accuracy * 100.0
281 );
282 println!(
283 " - Overall performance gain: {:.1}%",
284 realtime_results.performance_gain * 100.0
285 );
286
287 // Step 11: Error mitigation for inference
288 println!("\n11. Error mitigation for quantum ML inference...");
289
290 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292 let best_strategy = &strategies[sorted_results[0].0];
293 let mut inference_mitigator =
294 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296 let mitigated_inference =
297 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299 println!(" Inference Mitigation Results:");
300 println!(
301 " - Uncertainty reduction: {:.1}%",
302 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303 );
304 println!(
305 " - Reliability score: {:.3}",
306 mitigated_inference.reliability_score
307 );
308 println!(
309 " - Prediction confidence: {:.1}%",
310 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311 );
312
313 // Step 12: Performance and resource analysis
314 println!("\n12. Performance and resource analysis...");
315
316 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317 println!(" Resource Analysis:");
318 println!(
319 " - Average computational overhead: {:.1}x",
320 resource_analysis.avg_computational_overhead
321 );
322 println!(
323 " - Memory usage increase: {:.1}%",
324 resource_analysis.memory_overhead * 100.0
325 );
326 println!(
327 " - Classical processing time: {:.2} ms",
328 resource_analysis.classical_time_ms
329 );
330 println!(
331 " - Quantum circuit overhead: {:.1}%",
332 resource_analysis.quantum_overhead * 100.0
333 );
334
335 // Step 13: Quantum advantage analysis with error mitigation
336 println!("\n13. Quantum advantage analysis with error mitigation...");
337
338 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339 &test_circuit,
340 &sorted_results[0].2, // Best mitigation result
341 )?;
342
343 println!(" Quantum Advantage Analysis:");
344 println!(
345 " - Effective quantum volume: {}",
346 quantum_advantage.effective_quantum_volume
347 );
348 println!(
349 " - Noise-mitigated fidelity: {:.4}",
350 quantum_advantage.mitigated_fidelity
351 );
352 println!(
353 " - Classical simulation cost: {:.1}x harder",
354 quantum_advantage.classical_simulation_cost
355 );
356 println!(
357 " - Practical quantum advantage: {}",
358 if quantum_advantage.practical_advantage {
359 "Yes"
360 } else {
361 "Not yet"
362 }
363 );
364
365 // Step 14: Generate comprehensive report
366 println!("\n14. Generating comprehensive error mitigation report...");
367
368 let comprehensive_report = generate_comprehensive_mitigation_report(
369 &strategies,
370 &mitigation_results,
371 &training_history,
372 &resource_analysis,
373 &quantum_advantage,
374 )?;
375
376 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377 println!(" Comprehensive report saved to: error_mitigation_report.html");
378
379 // Step 15: Future recommendations
380 println!("\n15. Error mitigation recommendations...");
381
382 let recommendations =
383 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385 println!(" Recommendations:");
386 for (i, recommendation) in recommendations.iter().enumerate() {
387 println!(" {}. {}", i + 1, recommendation);
388 }
389
390 println!("\n=== Advanced Error Mitigation Demo Complete ===");
391 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392 println!("📊 All mitigation strategies evaluated and optimized");
393 println!("🚀 Quantum ML error mitigation framework ready for production");
394
395 Ok(())
396}Sourcepub fn mitigate_inference_errors(
&mut self,
circuit: &QuantumCircuit,
measurement_results: &Array2<f64>,
) -> Result<MitigatedInferenceData>
pub fn mitigate_inference_errors( &mut self, circuit: &QuantumCircuit, measurement_results: &Array2<f64>, ) -> Result<MitigatedInferenceData>
Apply error mitigation to quantum ML inference
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 297)
27fn main() -> Result<()> {
28 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30 // Step 1: Initialize noise model and calibration data
31 println!("1. Setting up noise model and calibration data...");
32
33 let noise_model = create_realistic_noise_model()?;
34 println!(
35 " - Noise model configured with {} gate types",
36 noise_model.gate_errors.len()
37 );
38 println!(
39 " - Average gate error rate: {:.4}",
40 calculate_average_error_rate(&noise_model)
41 );
42 println!(
43 " - Measurement fidelity: {:.3}",
44 noise_model.measurement_errors.readout_fidelity
45 );
46
47 // Step 2: Create different mitigation strategies
48 println!("\n2. Creating error mitigation strategies...");
49
50 let strategies = create_mitigation_strategies()?;
51 println!(
52 " - Created {} different mitigation strategies",
53 strategies.len()
54 );
55
56 for (i, strategy) in strategies.iter().enumerate() {
57 println!(" {}. {}", i + 1, get_strategy_name(strategy));
58 }
59
60 // Step 3: Initialize quantum ML circuit for testing
61 println!("\n3. Initializing quantum ML circuit...");
62
63 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66 println!(
67 " - Circuit: {} qubits, {} parameters",
68 test_circuit.num_qubits(),
69 initial_parameters.len()
70 );
71 println!(
72 " - Circuit depth: approximately {} gates",
73 estimate_circuit_depth(&test_circuit)
74 );
75
76 // Step 4: Simulate noisy measurements
77 println!("\n4. Simulating noisy quantum measurements...");
78
79 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80 let noisy_gradients =
81 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83 println!(
84 " - Generated {} measurement shots",
85 noisy_measurements.nrows()
86 );
87 println!(
88 " - Noise level in measurements: {:.3}",
89 assess_noise_level(&noisy_measurements)
90 );
91 println!(
92 " - Gradient noise standard deviation: {:.4}",
93 noisy_gradients.std(0.0)
94 );
95
96 // Step 5: Apply different mitigation strategies
97 println!("\n5. Applying different error mitigation strategies...");
98
99 let mut mitigation_results = Vec::new();
100
101 for (strategy_idx, strategy) in strategies.iter().enumerate() {
102 println!(
103 " Testing strategy {}: {}",
104 strategy_idx + 1,
105 get_strategy_name(strategy)
106 );
107
108 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110 let mitigated_data = mitigator.mitigate_training_errors(
111 &test_circuit,
112 &initial_parameters,
113 &noisy_measurements,
114 &noisy_gradients,
115 )?;
116
117 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118 println!(
119 " - Measurement improvement: {:.1}%",
120 improvement * 100.0
121 );
122 println!(
123 " - Confidence score: {:.3}",
124 mitigated_data.confidence_scores.mean().unwrap()
125 );
126 println!(
127 " - Mitigation overhead: {:.1}%",
128 mitigated_data.mitigation_overhead * 100.0
129 );
130
131 mitigation_results.push((strategy_idx, improvement, mitigated_data));
132 }
133
134 // Step 6: Compare mitigation effectiveness
135 println!("\n6. Comparing mitigation effectiveness...");
136
137 let mut sorted_results = mitigation_results.clone();
138 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140 println!(" Ranking by improvement:");
141 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142 println!(
143 " {}. {}: {:.1}% improvement",
144 rank + 1,
145 get_strategy_name(&strategies[*strategy_idx]),
146 improvement * 100.0
147 );
148 }
149
150 // Step 7: Demonstrate adaptive mitigation
151 println!("\n7. Demonstrating adaptive error mitigation...");
152
153 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154 strategies: strategies.clone(),
155 selection_policy: create_smart_selection_policy()?,
156 performance_tracker: create_performance_tracker()?,
157 };
158
159 let mut adaptive_mitigator =
160 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162 // Simulate training loop with adaptive mitigation
163 println!(" Simulating training with adaptive mitigation:");
164 let num_training_steps = 10;
165 let mut training_history = Vec::new();
166
167 for step in 0..num_training_steps {
168 // Simulate changing noise conditions
169 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170 adaptive_mitigator.noise_model = dynamic_noise;
171
172 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176 &test_circuit,
177 &initial_parameters,
178 &step_measurements,
179 &step_gradients,
180 )?;
181
182 let step_improvement =
183 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184 training_history.push(step_improvement);
185
186 if step % 3 == 0 {
187 println!(
188 " Step {}: {:.1}% improvement, confidence: {:.3}",
189 step + 1,
190 step_improvement * 100.0,
191 mitigated_step.confidence_scores.mean().unwrap()
192 );
193 }
194 }
195
196 let avg_adaptive_improvement =
197 training_history.iter().sum::<f64>() / training_history.len() as f64;
198 println!(
199 " Average adaptive improvement: {:.1}%",
200 avg_adaptive_improvement * 100.0
201 );
202
203 // Step 8: Demonstrate specialized mitigation techniques
204 println!("\n8. Demonstrating specialized mitigation techniques...");
205
206 // Zero Noise Extrapolation
207 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208 println!(" Zero Noise Extrapolation:");
209 println!(
210 " - Extrapolated fidelity: {:.4}",
211 zne_demo.extrapolated_fidelity
212 );
213 println!(
214 " - Confidence interval: [{:.4}, {:.4}]",
215 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216 );
217
218 // Readout Error Mitigation
219 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220 println!(" Readout Error Mitigation:");
221 println!(
222 " - Correction accuracy: {:.1}%",
223 readout_demo.correction_accuracy * 100.0
224 );
225 println!(
226 " - Assignment matrix condition number: {:.2}",
227 readout_demo.condition_number
228 );
229
230 // Clifford Data Regression
231 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232 println!(" Clifford Data Regression:");
233 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
234 println!(
235 " - Prediction accuracy: {:.1}%",
236 cdr_demo.prediction_accuracy * 100.0
237 );
238
239 // Virtual Distillation
240 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241 println!(" Virtual Distillation:");
242 println!(
243 " - Distillation fidelity: {:.4}",
244 vd_demo.distillation_fidelity
245 );
246 println!(
247 " - Resource overhead: {:.1}x",
248 vd_demo.resource_overhead
249 );
250
251 // Step 9: ML-based error mitigation
252 println!("\n9. Demonstrating ML-based error mitigation...");
253
254 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255 println!(" Machine Learning-based Mitigation:");
256 println!(
257 " - Neural network accuracy: {:.1}%",
258 ml_mitigation_demo.nn_accuracy * 100.0
259 );
260 println!(
261 " - Noise prediction MSE: {:.6}",
262 ml_mitigation_demo.prediction_mse
263 );
264 println!(
265 " - Correction effectiveness: {:.1}%",
266 ml_mitigation_demo.correction_effectiveness * 100.0
267 );
268
269 // Step 10: Real-time adaptive mitigation
270 println!("\n10. Real-time adaptive mitigation simulation...");
271
272 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273 println!(" Real-time Adaptation Results:");
274 println!(
275 " - Response time: {:.1} ms",
276 realtime_results.response_time_ms
277 );
278 println!(
279 " - Adaptation accuracy: {:.1}%",
280 realtime_results.adaptation_accuracy * 100.0
281 );
282 println!(
283 " - Overall performance gain: {:.1}%",
284 realtime_results.performance_gain * 100.0
285 );
286
287 // Step 11: Error mitigation for inference
288 println!("\n11. Error mitigation for quantum ML inference...");
289
290 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292 let best_strategy = &strategies[sorted_results[0].0];
293 let mut inference_mitigator =
294 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296 let mitigated_inference =
297 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299 println!(" Inference Mitigation Results:");
300 println!(
301 " - Uncertainty reduction: {:.1}%",
302 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303 );
304 println!(
305 " - Reliability score: {:.3}",
306 mitigated_inference.reliability_score
307 );
308 println!(
309 " - Prediction confidence: {:.1}%",
310 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311 );
312
313 // Step 12: Performance and resource analysis
314 println!("\n12. Performance and resource analysis...");
315
316 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317 println!(" Resource Analysis:");
318 println!(
319 " - Average computational overhead: {:.1}x",
320 resource_analysis.avg_computational_overhead
321 );
322 println!(
323 " - Memory usage increase: {:.1}%",
324 resource_analysis.memory_overhead * 100.0
325 );
326 println!(
327 " - Classical processing time: {:.2} ms",
328 resource_analysis.classical_time_ms
329 );
330 println!(
331 " - Quantum circuit overhead: {:.1}%",
332 resource_analysis.quantum_overhead * 100.0
333 );
334
335 // Step 13: Quantum advantage analysis with error mitigation
336 println!("\n13. Quantum advantage analysis with error mitigation...");
337
338 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339 &test_circuit,
340 &sorted_results[0].2, // Best mitigation result
341 )?;
342
343 println!(" Quantum Advantage Analysis:");
344 println!(
345 " - Effective quantum volume: {}",
346 quantum_advantage.effective_quantum_volume
347 );
348 println!(
349 " - Noise-mitigated fidelity: {:.4}",
350 quantum_advantage.mitigated_fidelity
351 );
352 println!(
353 " - Classical simulation cost: {:.1}x harder",
354 quantum_advantage.classical_simulation_cost
355 );
356 println!(
357 " - Practical quantum advantage: {}",
358 if quantum_advantage.practical_advantage {
359 "Yes"
360 } else {
361 "Not yet"
362 }
363 );
364
365 // Step 14: Generate comprehensive report
366 println!("\n14. Generating comprehensive error mitigation report...");
367
368 let comprehensive_report = generate_comprehensive_mitigation_report(
369 &strategies,
370 &mitigation_results,
371 &training_history,
372 &resource_analysis,
373 &quantum_advantage,
374 )?;
375
376 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377 println!(" Comprehensive report saved to: error_mitigation_report.html");
378
379 // Step 15: Future recommendations
380 println!("\n15. Error mitigation recommendations...");
381
382 let recommendations =
383 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385 println!(" Recommendations:");
386 for (i, recommendation) in recommendations.iter().enumerate() {
387 println!(" {}. {}", i + 1, recommendation);
388 }
389
390 println!("\n=== Advanced Error Mitigation Demo Complete ===");
391 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392 println!("📊 All mitigation strategies evaluated and optimized");
393 println!("🚀 Quantum ML error mitigation framework ready for production");
394
395 Ok(())
396}Auto Trait Implementations§
impl Freeze for QuantumMLErrorMitigator
impl RefUnwindSafe for QuantumMLErrorMitigator
impl Send for QuantumMLErrorMitigator
impl Sync for QuantumMLErrorMitigator
impl Unpin for QuantumMLErrorMitigator
impl UnwindSafe for QuantumMLErrorMitigator
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.