QuantumMLErrorMitigator

Struct QuantumMLErrorMitigator 

Source
pub struct QuantumMLErrorMitigator {
    pub mitigation_strategy: MitigationStrategy,
    pub noise_model: NoiseModel,
    pub calibration_data: CalibrationData,
    pub adaptive_config: AdaptiveConfig,
    pub performance_metrics: PerformanceMetrics,
}
Expand description

Advanced error mitigation framework for quantum ML

Fields§

§mitigation_strategy: MitigationStrategy§noise_model: NoiseModel§calibration_data: CalibrationData§adaptive_config: AdaptiveConfig§performance_metrics: PerformanceMetrics

Implementations§

Source§

impl QuantumMLErrorMitigator

Source

pub fn new( mitigation_strategy: MitigationStrategy, noise_model: NoiseModel, ) -> Result<Self>

Create a new error mitigation framework

Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 108)
27fn main() -> Result<()> {
28    println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30    // Step 1: Initialize noise model and calibration data
31    println!("1. Setting up noise model and calibration data...");
32
33    let noise_model = create_realistic_noise_model()?;
34    println!(
35        "   - Noise model configured with {} gate types",
36        noise_model.gate_errors.len()
37    );
38    println!(
39        "   - Average gate error rate: {:.4}",
40        calculate_average_error_rate(&noise_model)
41    );
42    println!(
43        "   - Measurement fidelity: {:.3}",
44        noise_model.measurement_errors.readout_fidelity
45    );
46
47    // Step 2: Create different mitigation strategies
48    println!("\n2. Creating error mitigation strategies...");
49
50    let strategies = create_mitigation_strategies()?;
51    println!(
52        "   - Created {} different mitigation strategies",
53        strategies.len()
54    );
55
56    for (i, strategy) in strategies.iter().enumerate() {
57        println!("   {}. {}", i + 1, get_strategy_name(strategy));
58    }
59
60    // Step 3: Initialize quantum ML circuit for testing
61    println!("\n3. Initializing quantum ML circuit...");
62
63    let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64    let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66    println!(
67        "   - Circuit: {} qubits, {} parameters",
68        test_circuit.num_qubits(),
69        initial_parameters.len()
70    );
71    println!(
72        "   - Circuit depth: approximately {} gates",
73        estimate_circuit_depth(&test_circuit)
74    );
75
76    // Step 4: Simulate noisy measurements
77    println!("\n4. Simulating noisy quantum measurements...");
78
79    let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80    let noisy_gradients =
81        simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83    println!(
84        "   - Generated {} measurement shots",
85        noisy_measurements.nrows()
86    );
87    println!(
88        "   - Noise level in measurements: {:.3}",
89        assess_noise_level(&noisy_measurements)
90    );
91    println!(
92        "   - Gradient noise standard deviation: {:.4}",
93        noisy_gradients.std(0.0)
94    );
95
96    // Step 5: Apply different mitigation strategies
97    println!("\n5. Applying different error mitigation strategies...");
98
99    let mut mitigation_results = Vec::new();
100
101    for (strategy_idx, strategy) in strategies.iter().enumerate() {
102        println!(
103            "   Testing strategy {}: {}",
104            strategy_idx + 1,
105            get_strategy_name(strategy)
106        );
107
108        let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110        let mitigated_data = mitigator.mitigate_training_errors(
111            &test_circuit,
112            &initial_parameters,
113            &noisy_measurements,
114            &noisy_gradients,
115        )?;
116
117        let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118        println!(
119            "     - Measurement improvement: {:.1}%",
120            improvement * 100.0
121        );
122        println!(
123            "     - Confidence score: {:.3}",
124            mitigated_data.confidence_scores.mean().unwrap()
125        );
126        println!(
127            "     - Mitigation overhead: {:.1}%",
128            mitigated_data.mitigation_overhead * 100.0
129        );
130
131        mitigation_results.push((strategy_idx, improvement, mitigated_data));
132    }
133
134    // Step 6: Compare mitigation effectiveness
135    println!("\n6. Comparing mitigation effectiveness...");
136
137    let mut sorted_results = mitigation_results.clone();
138    sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140    println!("   Ranking by improvement:");
141    for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142        println!(
143            "   {}. {}: {:.1}% improvement",
144            rank + 1,
145            get_strategy_name(&strategies[*strategy_idx]),
146            improvement * 100.0
147        );
148    }
149
150    // Step 7: Demonstrate adaptive mitigation
151    println!("\n7. Demonstrating adaptive error mitigation...");
152
153    let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154        strategies: strategies.clone(),
155        selection_policy: create_smart_selection_policy()?,
156        performance_tracker: create_performance_tracker()?,
157    };
158
159    let mut adaptive_mitigator =
160        QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162    // Simulate training loop with adaptive mitigation
163    println!("   Simulating training with adaptive mitigation:");
164    let num_training_steps = 10;
165    let mut training_history = Vec::new();
166
167    for step in 0..num_training_steps {
168        // Simulate changing noise conditions
169        let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170        adaptive_mitigator.noise_model = dynamic_noise;
171
172        let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173        let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175        let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176            &test_circuit,
177            &initial_parameters,
178            &step_measurements,
179            &step_gradients,
180        )?;
181
182        let step_improvement =
183            calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184        training_history.push(step_improvement);
185
186        if step % 3 == 0 {
187            println!(
188                "     Step {}: {:.1}% improvement, confidence: {:.3}",
189                step + 1,
190                step_improvement * 100.0,
191                mitigated_step.confidence_scores.mean().unwrap()
192            );
193        }
194    }
195
196    let avg_adaptive_improvement =
197        training_history.iter().sum::<f64>() / training_history.len() as f64;
198    println!(
199        "   Average adaptive improvement: {:.1}%",
200        avg_adaptive_improvement * 100.0
201    );
202
203    // Step 8: Demonstrate specialized mitigation techniques
204    println!("\n8. Demonstrating specialized mitigation techniques...");
205
206    // Zero Noise Extrapolation
207    let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208    println!("   Zero Noise Extrapolation:");
209    println!(
210        "     - Extrapolated fidelity: {:.4}",
211        zne_demo.extrapolated_fidelity
212    );
213    println!(
214        "     - Confidence interval: [{:.4}, {:.4}]",
215        zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216    );
217
218    // Readout Error Mitigation
219    let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220    println!("   Readout Error Mitigation:");
221    println!(
222        "     - Correction accuracy: {:.1}%",
223        readout_demo.correction_accuracy * 100.0
224    );
225    println!(
226        "     - Assignment matrix condition number: {:.2}",
227        readout_demo.condition_number
228    );
229
230    // Clifford Data Regression
231    let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232    println!("   Clifford Data Regression:");
233    println!("     - Regression R²: {:.3}", cdr_demo.r_squared);
234    println!(
235        "     - Prediction accuracy: {:.1}%",
236        cdr_demo.prediction_accuracy * 100.0
237    );
238
239    // Virtual Distillation
240    let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241    println!("   Virtual Distillation:");
242    println!(
243        "     - Distillation fidelity: {:.4}",
244        vd_demo.distillation_fidelity
245    );
246    println!(
247        "     - Resource overhead: {:.1}x",
248        vd_demo.resource_overhead
249    );
250
251    // Step 9: ML-based error mitigation
252    println!("\n9. Demonstrating ML-based error mitigation...");
253
254    let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255    println!("   Machine Learning-based Mitigation:");
256    println!(
257        "     - Neural network accuracy: {:.1}%",
258        ml_mitigation_demo.nn_accuracy * 100.0
259    );
260    println!(
261        "     - Noise prediction MSE: {:.6}",
262        ml_mitigation_demo.prediction_mse
263    );
264    println!(
265        "     - Correction effectiveness: {:.1}%",
266        ml_mitigation_demo.correction_effectiveness * 100.0
267    );
268
269    // Step 10: Real-time adaptive mitigation
270    println!("\n10. Real-time adaptive mitigation simulation...");
271
272    let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273    println!("    Real-time Adaptation Results:");
274    println!(
275        "    - Response time: {:.1} ms",
276        realtime_results.response_time_ms
277    );
278    println!(
279        "    - Adaptation accuracy: {:.1}%",
280        realtime_results.adaptation_accuracy * 100.0
281    );
282    println!(
283        "    - Overall performance gain: {:.1}%",
284        realtime_results.performance_gain * 100.0
285    );
286
287    // Step 11: Error mitigation for inference
288    println!("\n11. Error mitigation for quantum ML inference...");
289
290    let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292    let best_strategy = &strategies[sorted_results[0].0];
293    let mut inference_mitigator =
294        QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296    let mitigated_inference =
297        inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299    println!("    Inference Mitigation Results:");
300    println!(
301        "    - Uncertainty reduction: {:.1}%",
302        (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303    );
304    println!(
305        "    - Reliability score: {:.3}",
306        mitigated_inference.reliability_score
307    );
308    println!(
309        "    - Prediction confidence: {:.1}%",
310        calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311    );
312
313    // Step 12: Performance and resource analysis
314    println!("\n12. Performance and resource analysis...");
315
316    let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317    println!("    Resource Analysis:");
318    println!(
319        "    - Average computational overhead: {:.1}x",
320        resource_analysis.avg_computational_overhead
321    );
322    println!(
323        "    - Memory usage increase: {:.1}%",
324        resource_analysis.memory_overhead * 100.0
325    );
326    println!(
327        "    - Classical processing time: {:.2} ms",
328        resource_analysis.classical_time_ms
329    );
330    println!(
331        "    - Quantum circuit overhead: {:.1}%",
332        resource_analysis.quantum_overhead * 100.0
333    );
334
335    // Step 13: Quantum advantage analysis with error mitigation
336    println!("\n13. Quantum advantage analysis with error mitigation...");
337
338    let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339        &test_circuit,
340        &sorted_results[0].2, // Best mitigation result
341    )?;
342
343    println!("    Quantum Advantage Analysis:");
344    println!(
345        "    - Effective quantum volume: {}",
346        quantum_advantage.effective_quantum_volume
347    );
348    println!(
349        "    - Noise-mitigated fidelity: {:.4}",
350        quantum_advantage.mitigated_fidelity
351    );
352    println!(
353        "    - Classical simulation cost: {:.1}x harder",
354        quantum_advantage.classical_simulation_cost
355    );
356    println!(
357        "    - Practical quantum advantage: {}",
358        if quantum_advantage.practical_advantage {
359            "Yes"
360        } else {
361            "Not yet"
362        }
363    );
364
365    // Step 14: Generate comprehensive report
366    println!("\n14. Generating comprehensive error mitigation report...");
367
368    let comprehensive_report = generate_comprehensive_mitigation_report(
369        &strategies,
370        &mitigation_results,
371        &training_history,
372        &resource_analysis,
373        &quantum_advantage,
374    )?;
375
376    save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377    println!("    Comprehensive report saved to: error_mitigation_report.html");
378
379    // Step 15: Future recommendations
380    println!("\n15. Error mitigation recommendations...");
381
382    let recommendations =
383        generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385    println!("    Recommendations:");
386    for (i, recommendation) in recommendations.iter().enumerate() {
387        println!("    {}. {}", i + 1, recommendation);
388    }
389
390    println!("\n=== Advanced Error Mitigation Demo Complete ===");
391    println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392    println!("📊 All mitigation strategies evaluated and optimized");
393    println!("🚀 Quantum ML error mitigation framework ready for production");
394
395    Ok(())
396}
Source

pub fn mitigate_training_errors( &mut self, circuit: &QuantumCircuit, parameters: &Array1<f64>, measurement_results: &Array2<f64>, gradient_estimates: &Array1<f64>, ) -> Result<MitigatedTrainingData>

Apply error mitigation to quantum ML training

Examples found in repository?
examples/advanced_error_mitigation_demo.rs (lines 110-115)
27fn main() -> Result<()> {
28    println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30    // Step 1: Initialize noise model and calibration data
31    println!("1. Setting up noise model and calibration data...");
32
33    let noise_model = create_realistic_noise_model()?;
34    println!(
35        "   - Noise model configured with {} gate types",
36        noise_model.gate_errors.len()
37    );
38    println!(
39        "   - Average gate error rate: {:.4}",
40        calculate_average_error_rate(&noise_model)
41    );
42    println!(
43        "   - Measurement fidelity: {:.3}",
44        noise_model.measurement_errors.readout_fidelity
45    );
46
47    // Step 2: Create different mitigation strategies
48    println!("\n2. Creating error mitigation strategies...");
49
50    let strategies = create_mitigation_strategies()?;
51    println!(
52        "   - Created {} different mitigation strategies",
53        strategies.len()
54    );
55
56    for (i, strategy) in strategies.iter().enumerate() {
57        println!("   {}. {}", i + 1, get_strategy_name(strategy));
58    }
59
60    // Step 3: Initialize quantum ML circuit for testing
61    println!("\n3. Initializing quantum ML circuit...");
62
63    let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64    let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66    println!(
67        "   - Circuit: {} qubits, {} parameters",
68        test_circuit.num_qubits(),
69        initial_parameters.len()
70    );
71    println!(
72        "   - Circuit depth: approximately {} gates",
73        estimate_circuit_depth(&test_circuit)
74    );
75
76    // Step 4: Simulate noisy measurements
77    println!("\n4. Simulating noisy quantum measurements...");
78
79    let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80    let noisy_gradients =
81        simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83    println!(
84        "   - Generated {} measurement shots",
85        noisy_measurements.nrows()
86    );
87    println!(
88        "   - Noise level in measurements: {:.3}",
89        assess_noise_level(&noisy_measurements)
90    );
91    println!(
92        "   - Gradient noise standard deviation: {:.4}",
93        noisy_gradients.std(0.0)
94    );
95
96    // Step 5: Apply different mitigation strategies
97    println!("\n5. Applying different error mitigation strategies...");
98
99    let mut mitigation_results = Vec::new();
100
101    for (strategy_idx, strategy) in strategies.iter().enumerate() {
102        println!(
103            "   Testing strategy {}: {}",
104            strategy_idx + 1,
105            get_strategy_name(strategy)
106        );
107
108        let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110        let mitigated_data = mitigator.mitigate_training_errors(
111            &test_circuit,
112            &initial_parameters,
113            &noisy_measurements,
114            &noisy_gradients,
115        )?;
116
117        let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118        println!(
119            "     - Measurement improvement: {:.1}%",
120            improvement * 100.0
121        );
122        println!(
123            "     - Confidence score: {:.3}",
124            mitigated_data.confidence_scores.mean().unwrap()
125        );
126        println!(
127            "     - Mitigation overhead: {:.1}%",
128            mitigated_data.mitigation_overhead * 100.0
129        );
130
131        mitigation_results.push((strategy_idx, improvement, mitigated_data));
132    }
133
134    // Step 6: Compare mitigation effectiveness
135    println!("\n6. Comparing mitigation effectiveness...");
136
137    let mut sorted_results = mitigation_results.clone();
138    sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140    println!("   Ranking by improvement:");
141    for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142        println!(
143            "   {}. {}: {:.1}% improvement",
144            rank + 1,
145            get_strategy_name(&strategies[*strategy_idx]),
146            improvement * 100.0
147        );
148    }
149
150    // Step 7: Demonstrate adaptive mitigation
151    println!("\n7. Demonstrating adaptive error mitigation...");
152
153    let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154        strategies: strategies.clone(),
155        selection_policy: create_smart_selection_policy()?,
156        performance_tracker: create_performance_tracker()?,
157    };
158
159    let mut adaptive_mitigator =
160        QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162    // Simulate training loop with adaptive mitigation
163    println!("   Simulating training with adaptive mitigation:");
164    let num_training_steps = 10;
165    let mut training_history = Vec::new();
166
167    for step in 0..num_training_steps {
168        // Simulate changing noise conditions
169        let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170        adaptive_mitigator.noise_model = dynamic_noise;
171
172        let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173        let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175        let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176            &test_circuit,
177            &initial_parameters,
178            &step_measurements,
179            &step_gradients,
180        )?;
181
182        let step_improvement =
183            calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184        training_history.push(step_improvement);
185
186        if step % 3 == 0 {
187            println!(
188                "     Step {}: {:.1}% improvement, confidence: {:.3}",
189                step + 1,
190                step_improvement * 100.0,
191                mitigated_step.confidence_scores.mean().unwrap()
192            );
193        }
194    }
195
196    let avg_adaptive_improvement =
197        training_history.iter().sum::<f64>() / training_history.len() as f64;
198    println!(
199        "   Average adaptive improvement: {:.1}%",
200        avg_adaptive_improvement * 100.0
201    );
202
203    // Step 8: Demonstrate specialized mitigation techniques
204    println!("\n8. Demonstrating specialized mitigation techniques...");
205
206    // Zero Noise Extrapolation
207    let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208    println!("   Zero Noise Extrapolation:");
209    println!(
210        "     - Extrapolated fidelity: {:.4}",
211        zne_demo.extrapolated_fidelity
212    );
213    println!(
214        "     - Confidence interval: [{:.4}, {:.4}]",
215        zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216    );
217
218    // Readout Error Mitigation
219    let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220    println!("   Readout Error Mitigation:");
221    println!(
222        "     - Correction accuracy: {:.1}%",
223        readout_demo.correction_accuracy * 100.0
224    );
225    println!(
226        "     - Assignment matrix condition number: {:.2}",
227        readout_demo.condition_number
228    );
229
230    // Clifford Data Regression
231    let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232    println!("   Clifford Data Regression:");
233    println!("     - Regression R²: {:.3}", cdr_demo.r_squared);
234    println!(
235        "     - Prediction accuracy: {:.1}%",
236        cdr_demo.prediction_accuracy * 100.0
237    );
238
239    // Virtual Distillation
240    let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241    println!("   Virtual Distillation:");
242    println!(
243        "     - Distillation fidelity: {:.4}",
244        vd_demo.distillation_fidelity
245    );
246    println!(
247        "     - Resource overhead: {:.1}x",
248        vd_demo.resource_overhead
249    );
250
251    // Step 9: ML-based error mitigation
252    println!("\n9. Demonstrating ML-based error mitigation...");
253
254    let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255    println!("   Machine Learning-based Mitigation:");
256    println!(
257        "     - Neural network accuracy: {:.1}%",
258        ml_mitigation_demo.nn_accuracy * 100.0
259    );
260    println!(
261        "     - Noise prediction MSE: {:.6}",
262        ml_mitigation_demo.prediction_mse
263    );
264    println!(
265        "     - Correction effectiveness: {:.1}%",
266        ml_mitigation_demo.correction_effectiveness * 100.0
267    );
268
269    // Step 10: Real-time adaptive mitigation
270    println!("\n10. Real-time adaptive mitigation simulation...");
271
272    let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273    println!("    Real-time Adaptation Results:");
274    println!(
275        "    - Response time: {:.1} ms",
276        realtime_results.response_time_ms
277    );
278    println!(
279        "    - Adaptation accuracy: {:.1}%",
280        realtime_results.adaptation_accuracy * 100.0
281    );
282    println!(
283        "    - Overall performance gain: {:.1}%",
284        realtime_results.performance_gain * 100.0
285    );
286
287    // Step 11: Error mitigation for inference
288    println!("\n11. Error mitigation for quantum ML inference...");
289
290    let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292    let best_strategy = &strategies[sorted_results[0].0];
293    let mut inference_mitigator =
294        QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296    let mitigated_inference =
297        inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299    println!("    Inference Mitigation Results:");
300    println!(
301        "    - Uncertainty reduction: {:.1}%",
302        (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303    );
304    println!(
305        "    - Reliability score: {:.3}",
306        mitigated_inference.reliability_score
307    );
308    println!(
309        "    - Prediction confidence: {:.1}%",
310        calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311    );
312
313    // Step 12: Performance and resource analysis
314    println!("\n12. Performance and resource analysis...");
315
316    let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317    println!("    Resource Analysis:");
318    println!(
319        "    - Average computational overhead: {:.1}x",
320        resource_analysis.avg_computational_overhead
321    );
322    println!(
323        "    - Memory usage increase: {:.1}%",
324        resource_analysis.memory_overhead * 100.0
325    );
326    println!(
327        "    - Classical processing time: {:.2} ms",
328        resource_analysis.classical_time_ms
329    );
330    println!(
331        "    - Quantum circuit overhead: {:.1}%",
332        resource_analysis.quantum_overhead * 100.0
333    );
334
335    // Step 13: Quantum advantage analysis with error mitigation
336    println!("\n13. Quantum advantage analysis with error mitigation...");
337
338    let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339        &test_circuit,
340        &sorted_results[0].2, // Best mitigation result
341    )?;
342
343    println!("    Quantum Advantage Analysis:");
344    println!(
345        "    - Effective quantum volume: {}",
346        quantum_advantage.effective_quantum_volume
347    );
348    println!(
349        "    - Noise-mitigated fidelity: {:.4}",
350        quantum_advantage.mitigated_fidelity
351    );
352    println!(
353        "    - Classical simulation cost: {:.1}x harder",
354        quantum_advantage.classical_simulation_cost
355    );
356    println!(
357        "    - Practical quantum advantage: {}",
358        if quantum_advantage.practical_advantage {
359            "Yes"
360        } else {
361            "Not yet"
362        }
363    );
364
365    // Step 14: Generate comprehensive report
366    println!("\n14. Generating comprehensive error mitigation report...");
367
368    let comprehensive_report = generate_comprehensive_mitigation_report(
369        &strategies,
370        &mitigation_results,
371        &training_history,
372        &resource_analysis,
373        &quantum_advantage,
374    )?;
375
376    save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377    println!("    Comprehensive report saved to: error_mitigation_report.html");
378
379    // Step 15: Future recommendations
380    println!("\n15. Error mitigation recommendations...");
381
382    let recommendations =
383        generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385    println!("    Recommendations:");
386    for (i, recommendation) in recommendations.iter().enumerate() {
387        println!("    {}. {}", i + 1, recommendation);
388    }
389
390    println!("\n=== Advanced Error Mitigation Demo Complete ===");
391    println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392    println!("📊 All mitigation strategies evaluated and optimized");
393    println!("🚀 Quantum ML error mitigation framework ready for production");
394
395    Ok(())
396}
Source

pub fn mitigate_inference_errors( &mut self, circuit: &QuantumCircuit, measurement_results: &Array2<f64>, ) -> Result<MitigatedInferenceData>

Apply error mitigation to quantum ML inference

Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 297)
27fn main() -> Result<()> {
28    println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30    // Step 1: Initialize noise model and calibration data
31    println!("1. Setting up noise model and calibration data...");
32
33    let noise_model = create_realistic_noise_model()?;
34    println!(
35        "   - Noise model configured with {} gate types",
36        noise_model.gate_errors.len()
37    );
38    println!(
39        "   - Average gate error rate: {:.4}",
40        calculate_average_error_rate(&noise_model)
41    );
42    println!(
43        "   - Measurement fidelity: {:.3}",
44        noise_model.measurement_errors.readout_fidelity
45    );
46
47    // Step 2: Create different mitigation strategies
48    println!("\n2. Creating error mitigation strategies...");
49
50    let strategies = create_mitigation_strategies()?;
51    println!(
52        "   - Created {} different mitigation strategies",
53        strategies.len()
54    );
55
56    for (i, strategy) in strategies.iter().enumerate() {
57        println!("   {}. {}", i + 1, get_strategy_name(strategy));
58    }
59
60    // Step 3: Initialize quantum ML circuit for testing
61    println!("\n3. Initializing quantum ML circuit...");
62
63    let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64    let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66    println!(
67        "   - Circuit: {} qubits, {} parameters",
68        test_circuit.num_qubits(),
69        initial_parameters.len()
70    );
71    println!(
72        "   - Circuit depth: approximately {} gates",
73        estimate_circuit_depth(&test_circuit)
74    );
75
76    // Step 4: Simulate noisy measurements
77    println!("\n4. Simulating noisy quantum measurements...");
78
79    let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80    let noisy_gradients =
81        simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83    println!(
84        "   - Generated {} measurement shots",
85        noisy_measurements.nrows()
86    );
87    println!(
88        "   - Noise level in measurements: {:.3}",
89        assess_noise_level(&noisy_measurements)
90    );
91    println!(
92        "   - Gradient noise standard deviation: {:.4}",
93        noisy_gradients.std(0.0)
94    );
95
96    // Step 5: Apply different mitigation strategies
97    println!("\n5. Applying different error mitigation strategies...");
98
99    let mut mitigation_results = Vec::new();
100
101    for (strategy_idx, strategy) in strategies.iter().enumerate() {
102        println!(
103            "   Testing strategy {}: {}",
104            strategy_idx + 1,
105            get_strategy_name(strategy)
106        );
107
108        let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110        let mitigated_data = mitigator.mitigate_training_errors(
111            &test_circuit,
112            &initial_parameters,
113            &noisy_measurements,
114            &noisy_gradients,
115        )?;
116
117        let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118        println!(
119            "     - Measurement improvement: {:.1}%",
120            improvement * 100.0
121        );
122        println!(
123            "     - Confidence score: {:.3}",
124            mitigated_data.confidence_scores.mean().unwrap()
125        );
126        println!(
127            "     - Mitigation overhead: {:.1}%",
128            mitigated_data.mitigation_overhead * 100.0
129        );
130
131        mitigation_results.push((strategy_idx, improvement, mitigated_data));
132    }
133
134    // Step 6: Compare mitigation effectiveness
135    println!("\n6. Comparing mitigation effectiveness...");
136
137    let mut sorted_results = mitigation_results.clone();
138    sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140    println!("   Ranking by improvement:");
141    for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142        println!(
143            "   {}. {}: {:.1}% improvement",
144            rank + 1,
145            get_strategy_name(&strategies[*strategy_idx]),
146            improvement * 100.0
147        );
148    }
149
150    // Step 7: Demonstrate adaptive mitigation
151    println!("\n7. Demonstrating adaptive error mitigation...");
152
153    let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154        strategies: strategies.clone(),
155        selection_policy: create_smart_selection_policy()?,
156        performance_tracker: create_performance_tracker()?,
157    };
158
159    let mut adaptive_mitigator =
160        QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162    // Simulate training loop with adaptive mitigation
163    println!("   Simulating training with adaptive mitigation:");
164    let num_training_steps = 10;
165    let mut training_history = Vec::new();
166
167    for step in 0..num_training_steps {
168        // Simulate changing noise conditions
169        let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170        adaptive_mitigator.noise_model = dynamic_noise;
171
172        let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173        let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175        let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176            &test_circuit,
177            &initial_parameters,
178            &step_measurements,
179            &step_gradients,
180        )?;
181
182        let step_improvement =
183            calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184        training_history.push(step_improvement);
185
186        if step % 3 == 0 {
187            println!(
188                "     Step {}: {:.1}% improvement, confidence: {:.3}",
189                step + 1,
190                step_improvement * 100.0,
191                mitigated_step.confidence_scores.mean().unwrap()
192            );
193        }
194    }
195
196    let avg_adaptive_improvement =
197        training_history.iter().sum::<f64>() / training_history.len() as f64;
198    println!(
199        "   Average adaptive improvement: {:.1}%",
200        avg_adaptive_improvement * 100.0
201    );
202
203    // Step 8: Demonstrate specialized mitigation techniques
204    println!("\n8. Demonstrating specialized mitigation techniques...");
205
206    // Zero Noise Extrapolation
207    let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208    println!("   Zero Noise Extrapolation:");
209    println!(
210        "     - Extrapolated fidelity: {:.4}",
211        zne_demo.extrapolated_fidelity
212    );
213    println!(
214        "     - Confidence interval: [{:.4}, {:.4}]",
215        zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216    );
217
218    // Readout Error Mitigation
219    let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220    println!("   Readout Error Mitigation:");
221    println!(
222        "     - Correction accuracy: {:.1}%",
223        readout_demo.correction_accuracy * 100.0
224    );
225    println!(
226        "     - Assignment matrix condition number: {:.2}",
227        readout_demo.condition_number
228    );
229
230    // Clifford Data Regression
231    let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232    println!("   Clifford Data Regression:");
233    println!("     - Regression R²: {:.3}", cdr_demo.r_squared);
234    println!(
235        "     - Prediction accuracy: {:.1}%",
236        cdr_demo.prediction_accuracy * 100.0
237    );
238
239    // Virtual Distillation
240    let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241    println!("   Virtual Distillation:");
242    println!(
243        "     - Distillation fidelity: {:.4}",
244        vd_demo.distillation_fidelity
245    );
246    println!(
247        "     - Resource overhead: {:.1}x",
248        vd_demo.resource_overhead
249    );
250
251    // Step 9: ML-based error mitigation
252    println!("\n9. Demonstrating ML-based error mitigation...");
253
254    let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255    println!("   Machine Learning-based Mitigation:");
256    println!(
257        "     - Neural network accuracy: {:.1}%",
258        ml_mitigation_demo.nn_accuracy * 100.0
259    );
260    println!(
261        "     - Noise prediction MSE: {:.6}",
262        ml_mitigation_demo.prediction_mse
263    );
264    println!(
265        "     - Correction effectiveness: {:.1}%",
266        ml_mitigation_demo.correction_effectiveness * 100.0
267    );
268
269    // Step 10: Real-time adaptive mitigation
270    println!("\n10. Real-time adaptive mitigation simulation...");
271
272    let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273    println!("    Real-time Adaptation Results:");
274    println!(
275        "    - Response time: {:.1} ms",
276        realtime_results.response_time_ms
277    );
278    println!(
279        "    - Adaptation accuracy: {:.1}%",
280        realtime_results.adaptation_accuracy * 100.0
281    );
282    println!(
283        "    - Overall performance gain: {:.1}%",
284        realtime_results.performance_gain * 100.0
285    );
286
287    // Step 11: Error mitigation for inference
288    println!("\n11. Error mitigation for quantum ML inference...");
289
290    let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292    let best_strategy = &strategies[sorted_results[0].0];
293    let mut inference_mitigator =
294        QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296    let mitigated_inference =
297        inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299    println!("    Inference Mitigation Results:");
300    println!(
301        "    - Uncertainty reduction: {:.1}%",
302        (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303    );
304    println!(
305        "    - Reliability score: {:.3}",
306        mitigated_inference.reliability_score
307    );
308    println!(
309        "    - Prediction confidence: {:.1}%",
310        calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311    );
312
313    // Step 12: Performance and resource analysis
314    println!("\n12. Performance and resource analysis...");
315
316    let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317    println!("    Resource Analysis:");
318    println!(
319        "    - Average computational overhead: {:.1}x",
320        resource_analysis.avg_computational_overhead
321    );
322    println!(
323        "    - Memory usage increase: {:.1}%",
324        resource_analysis.memory_overhead * 100.0
325    );
326    println!(
327        "    - Classical processing time: {:.2} ms",
328        resource_analysis.classical_time_ms
329    );
330    println!(
331        "    - Quantum circuit overhead: {:.1}%",
332        resource_analysis.quantum_overhead * 100.0
333    );
334
335    // Step 13: Quantum advantage analysis with error mitigation
336    println!("\n13. Quantum advantage analysis with error mitigation...");
337
338    let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339        &test_circuit,
340        &sorted_results[0].2, // Best mitigation result
341    )?;
342
343    println!("    Quantum Advantage Analysis:");
344    println!(
345        "    - Effective quantum volume: {}",
346        quantum_advantage.effective_quantum_volume
347    );
348    println!(
349        "    - Noise-mitigated fidelity: {:.4}",
350        quantum_advantage.mitigated_fidelity
351    );
352    println!(
353        "    - Classical simulation cost: {:.1}x harder",
354        quantum_advantage.classical_simulation_cost
355    );
356    println!(
357        "    - Practical quantum advantage: {}",
358        if quantum_advantage.practical_advantage {
359            "Yes"
360        } else {
361            "Not yet"
362        }
363    );
364
365    // Step 14: Generate comprehensive report
366    println!("\n14. Generating comprehensive error mitigation report...");
367
368    let comprehensive_report = generate_comprehensive_mitigation_report(
369        &strategies,
370        &mitigation_results,
371        &training_history,
372        &resource_analysis,
373        &quantum_advantage,
374    )?;
375
376    save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377    println!("    Comprehensive report saved to: error_mitigation_report.html");
378
379    // Step 15: Future recommendations
380    println!("\n15. Error mitigation recommendations...");
381
382    let recommendations =
383        generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385    println!("    Recommendations:");
386    for (i, recommendation) in recommendations.iter().enumerate() {
387        println!("    {}. {}", i + 1, recommendation);
388    }
389
390    println!("\n=== Advanced Error Mitigation Demo Complete ===");
391    println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392    println!("📊 All mitigation strategies evaluated and optimized");
393    println!("🚀 Quantum ML error mitigation framework ready for production");
394
395    Ok(())
396}

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V