pub struct QuantumCircuit {
pub gates: Vec<QuantumGate>,
pub qubits: usize,
}Fields§
§gates: Vec<QuantumGate>§qubits: usizeImplementations§
Source§impl QuantumCircuit
impl QuantumCircuit
Sourcepub fn num_qubits(&self) -> usize
pub fn num_qubits(&self) -> usize
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 68)
27fn main() -> Result<()> {
28 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
29
30 // Step 1: Initialize noise model and calibration data
31 println!("1. Setting up noise model and calibration data...");
32
33 let noise_model = create_realistic_noise_model()?;
34 println!(
35 " - Noise model configured with {} gate types",
36 noise_model.gate_errors.len()
37 );
38 println!(
39 " - Average gate error rate: {:.4}",
40 calculate_average_error_rate(&noise_model)
41 );
42 println!(
43 " - Measurement fidelity: {:.3}",
44 noise_model.measurement_errors.readout_fidelity
45 );
46
47 // Step 2: Create different mitigation strategies
48 println!("\n2. Creating error mitigation strategies...");
49
50 let strategies = create_mitigation_strategies()?;
51 println!(
52 " - Created {} different mitigation strategies",
53 strategies.len()
54 );
55
56 for (i, strategy) in strategies.iter().enumerate() {
57 println!(" {}. {}", i + 1, get_strategy_name(strategy));
58 }
59
60 // Step 3: Initialize quantum ML circuit for testing
61 println!("\n3. Initializing quantum ML circuit...");
62
63 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
64 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
65
66 println!(
67 " - Circuit: {} qubits, {} parameters",
68 test_circuit.num_qubits(),
69 initial_parameters.len()
70 );
71 println!(
72 " - Circuit depth: approximately {} gates",
73 estimate_circuit_depth(&test_circuit)
74 );
75
76 // Step 4: Simulate noisy measurements
77 println!("\n4. Simulating noisy quantum measurements...");
78
79 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
80 let noisy_gradients =
81 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
82
83 println!(
84 " - Generated {} measurement shots",
85 noisy_measurements.nrows()
86 );
87 println!(
88 " - Noise level in measurements: {:.3}",
89 assess_noise_level(&noisy_measurements)
90 );
91 println!(
92 " - Gradient noise standard deviation: {:.4}",
93 noisy_gradients.std(0.0)
94 );
95
96 // Step 5: Apply different mitigation strategies
97 println!("\n5. Applying different error mitigation strategies...");
98
99 let mut mitigation_results = Vec::new();
100
101 for (strategy_idx, strategy) in strategies.iter().enumerate() {
102 println!(
103 " Testing strategy {}: {}",
104 strategy_idx + 1,
105 get_strategy_name(strategy)
106 );
107
108 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
109
110 let mitigated_data = mitigator.mitigate_training_errors(
111 &test_circuit,
112 &initial_parameters,
113 &noisy_measurements,
114 &noisy_gradients,
115 )?;
116
117 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
118 println!(
119 " - Measurement improvement: {:.1}%",
120 improvement * 100.0
121 );
122 println!(
123 " - Confidence score: {:.3}",
124 mitigated_data.confidence_scores.mean().unwrap()
125 );
126 println!(
127 " - Mitigation overhead: {:.1}%",
128 mitigated_data.mitigation_overhead * 100.0
129 );
130
131 mitigation_results.push((strategy_idx, improvement, mitigated_data));
132 }
133
134 // Step 6: Compare mitigation effectiveness
135 println!("\n6. Comparing mitigation effectiveness...");
136
137 let mut sorted_results = mitigation_results.clone();
138 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
139
140 println!(" Ranking by improvement:");
141 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
142 println!(
143 " {}. {}: {:.1}% improvement",
144 rank + 1,
145 get_strategy_name(&strategies[*strategy_idx]),
146 improvement * 100.0
147 );
148 }
149
150 // Step 7: Demonstrate adaptive mitigation
151 println!("\n7. Demonstrating adaptive error mitigation...");
152
153 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
154 strategies: strategies.clone(),
155 selection_policy: create_smart_selection_policy()?,
156 performance_tracker: create_performance_tracker()?,
157 };
158
159 let mut adaptive_mitigator =
160 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
161
162 // Simulate training loop with adaptive mitigation
163 println!(" Simulating training with adaptive mitigation:");
164 let num_training_steps = 10;
165 let mut training_history = Vec::new();
166
167 for step in 0..num_training_steps {
168 // Simulate changing noise conditions
169 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
170 adaptive_mitigator.noise_model = dynamic_noise;
171
172 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
173 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
174
175 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
176 &test_circuit,
177 &initial_parameters,
178 &step_measurements,
179 &step_gradients,
180 )?;
181
182 let step_improvement =
183 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
184 training_history.push(step_improvement);
185
186 if step % 3 == 0 {
187 println!(
188 " Step {}: {:.1}% improvement, confidence: {:.3}",
189 step + 1,
190 step_improvement * 100.0,
191 mitigated_step.confidence_scores.mean().unwrap()
192 );
193 }
194 }
195
196 let avg_adaptive_improvement =
197 training_history.iter().sum::<f64>() / training_history.len() as f64;
198 println!(
199 " Average adaptive improvement: {:.1}%",
200 avg_adaptive_improvement * 100.0
201 );
202
203 // Step 8: Demonstrate specialized mitigation techniques
204 println!("\n8. Demonstrating specialized mitigation techniques...");
205
206 // Zero Noise Extrapolation
207 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
208 println!(" Zero Noise Extrapolation:");
209 println!(
210 " - Extrapolated fidelity: {:.4}",
211 zne_demo.extrapolated_fidelity
212 );
213 println!(
214 " - Confidence interval: [{:.4}, {:.4}]",
215 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
216 );
217
218 // Readout Error Mitigation
219 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
220 println!(" Readout Error Mitigation:");
221 println!(
222 " - Correction accuracy: {:.1}%",
223 readout_demo.correction_accuracy * 100.0
224 );
225 println!(
226 " - Assignment matrix condition number: {:.2}",
227 readout_demo.condition_number
228 );
229
230 // Clifford Data Regression
231 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
232 println!(" Clifford Data Regression:");
233 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
234 println!(
235 " - Prediction accuracy: {:.1}%",
236 cdr_demo.prediction_accuracy * 100.0
237 );
238
239 // Virtual Distillation
240 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
241 println!(" Virtual Distillation:");
242 println!(
243 " - Distillation fidelity: {:.4}",
244 vd_demo.distillation_fidelity
245 );
246 println!(
247 " - Resource overhead: {:.1}x",
248 vd_demo.resource_overhead
249 );
250
251 // Step 9: ML-based error mitigation
252 println!("\n9. Demonstrating ML-based error mitigation...");
253
254 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
255 println!(" Machine Learning-based Mitigation:");
256 println!(
257 " - Neural network accuracy: {:.1}%",
258 ml_mitigation_demo.nn_accuracy * 100.0
259 );
260 println!(
261 " - Noise prediction MSE: {:.6}",
262 ml_mitigation_demo.prediction_mse
263 );
264 println!(
265 " - Correction effectiveness: {:.1}%",
266 ml_mitigation_demo.correction_effectiveness * 100.0
267 );
268
269 // Step 10: Real-time adaptive mitigation
270 println!("\n10. Real-time adaptive mitigation simulation...");
271
272 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
273 println!(" Real-time Adaptation Results:");
274 println!(
275 " - Response time: {:.1} ms",
276 realtime_results.response_time_ms
277 );
278 println!(
279 " - Adaptation accuracy: {:.1}%",
280 realtime_results.adaptation_accuracy * 100.0
281 );
282 println!(
283 " - Overall performance gain: {:.1}%",
284 realtime_results.performance_gain * 100.0
285 );
286
287 // Step 11: Error mitigation for inference
288 println!("\n11. Error mitigation for quantum ML inference...");
289
290 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
291
292 let best_strategy = &strategies[sorted_results[0].0];
293 let mut inference_mitigator =
294 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
295
296 let mitigated_inference =
297 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
298
299 println!(" Inference Mitigation Results:");
300 println!(
301 " - Uncertainty reduction: {:.1}%",
302 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
303 );
304 println!(
305 " - Reliability score: {:.3}",
306 mitigated_inference.reliability_score
307 );
308 println!(
309 " - Prediction confidence: {:.1}%",
310 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
311 );
312
313 // Step 12: Performance and resource analysis
314 println!("\n12. Performance and resource analysis...");
315
316 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
317 println!(" Resource Analysis:");
318 println!(
319 " - Average computational overhead: {:.1}x",
320 resource_analysis.avg_computational_overhead
321 );
322 println!(
323 " - Memory usage increase: {:.1}%",
324 resource_analysis.memory_overhead * 100.0
325 );
326 println!(
327 " - Classical processing time: {:.2} ms",
328 resource_analysis.classical_time_ms
329 );
330 println!(
331 " - Quantum circuit overhead: {:.1}%",
332 resource_analysis.quantum_overhead * 100.0
333 );
334
335 // Step 13: Quantum advantage analysis with error mitigation
336 println!("\n13. Quantum advantage analysis with error mitigation...");
337
338 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
339 &test_circuit,
340 &sorted_results[0].2, // Best mitigation result
341 )?;
342
343 println!(" Quantum Advantage Analysis:");
344 println!(
345 " - Effective quantum volume: {}",
346 quantum_advantage.effective_quantum_volume
347 );
348 println!(
349 " - Noise-mitigated fidelity: {:.4}",
350 quantum_advantage.mitigated_fidelity
351 );
352 println!(
353 " - Classical simulation cost: {:.1}x harder",
354 quantum_advantage.classical_simulation_cost
355 );
356 println!(
357 " - Practical quantum advantage: {}",
358 if quantum_advantage.practical_advantage {
359 "Yes"
360 } else {
361 "Not yet"
362 }
363 );
364
365 // Step 14: Generate comprehensive report
366 println!("\n14. Generating comprehensive error mitigation report...");
367
368 let comprehensive_report = generate_comprehensive_mitigation_report(
369 &strategies,
370 &mitigation_results,
371 &training_history,
372 &resource_analysis,
373 &quantum_advantage,
374 )?;
375
376 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
377 println!(" Comprehensive report saved to: error_mitigation_report.html");
378
379 // Step 15: Future recommendations
380 println!("\n15. Error mitigation recommendations...");
381
382 let recommendations =
383 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
384
385 println!(" Recommendations:");
386 for (i, recommendation) in recommendations.iter().enumerate() {
387 println!(" {}. {}", i + 1, recommendation);
388 }
389
390 println!("\n=== Advanced Error Mitigation Demo Complete ===");
391 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
392 println!("📊 All mitigation strategies evaluated and optimized");
393 println!("🚀 Quantum ML error mitigation framework ready for production");
394
395 Ok(())
396}
397
398// Helper functions for the demo
399
400fn create_realistic_noise_model() -> Result<NoiseModel> {
401 let mut gate_errors = HashMap::new();
402
403 // Single-qubit gate errors
404 gate_errors.insert(
405 "X".to_string(),
406 GateErrorModel {
407 error_rate: 0.001,
408 error_type: ErrorType::Depolarizing { strength: 0.002 },
409 coherence_limited: true,
410 gate_time: 50e-9, // 50 ns
411 fidelity_model: FidelityModel,
412 },
413 );
414
415 gate_errors.insert(
416 "RZ".to_string(),
417 GateErrorModel {
418 error_rate: 0.0005,
419 error_type: ErrorType::Phase {
420 dephasing_rate: 0.001,
421 },
422 coherence_limited: true,
423 gate_time: 0.0, // Virtual gate
424 fidelity_model: FidelityModel,
425 },
426 );
427
428 // Two-qubit gate errors
429 gate_errors.insert(
430 "CNOT".to_string(),
431 GateErrorModel {
432 error_rate: 0.01,
433 error_type: ErrorType::Depolarizing { strength: 0.02 },
434 coherence_limited: true,
435 gate_time: 200e-9, // 200 ns
436 fidelity_model: FidelityModel,
437 },
438 );
439
440 let measurement_errors = MeasurementErrorModel {
441 readout_fidelity: 0.95,
442 assignment_matrix: Array2::from_shape_vec((2, 2), vec![0.95, 0.05, 0.03, 0.97])?,
443 state_preparation_errors: Array1::from_vec(vec![0.01, 0.01, 0.01, 0.01]),
444 measurement_crosstalk: Array2::zeros((4, 4)),
445 };
446
447 let coherence_times = CoherenceTimeModel {
448 t1_times: Array1::from_vec(vec![100e-6, 80e-6, 120e-6, 90e-6]), // T1 times in seconds
449 t2_times: Array1::from_vec(vec![50e-6, 60e-6, 70e-6, 55e-6]), // T2 times in seconds
450 t2_echo_times: Array1::from_vec(vec![150e-6, 140e-6, 160e-6, 145e-6]),
451 temporal_fluctuations: TemporalFluctuation,
452 };
453
454 Ok(NoiseModel {
455 gate_errors,
456 measurement_errors,
457 coherence_times,
458 crosstalk_matrix: Array2::zeros((4, 4)),
459 temporal_correlations: TemporalCorrelationModel {
460 correlation_function: CorrelationFunction::Exponential,
461 correlation_time: 1e-3,
462 noise_spectrum: NoiseSpectrum,
463 },
464 })
465}
466
467fn create_mitigation_strategies() -> Result<Vec<MitigationStrategy>> {
468 Ok(vec![
469 MitigationStrategy::ZNE {
470 scale_factors: vec![1.0, 2.0, 3.0],
471 extrapolation_method: ExtrapolationMethod::Polynomial { degree: 2 },
472 circuit_folding: CircuitFoldingMethod::GlobalFolding,
473 },
474 MitigationStrategy::ReadoutErrorMitigation {
475 calibration_matrix: Array2::from_shape_vec(
476 (4, 4),
477 vec![
478 0.95, 0.02, 0.02, 0.01, 0.02, 0.96, 0.01, 0.01, 0.02, 0.01, 0.95, 0.02, 0.01,
479 0.01, 0.02, 0.96,
480 ],
481 )?,
482 correction_method: ReadoutCorrectionMethod::MatrixInversion,
483 regularization: 1e-6,
484 },
485 MitigationStrategy::CDR {
486 training_circuits: vec![CliffordCircuit; 10],
487 regression_model: CDRModel,
488 feature_extraction:
489 quantrs2_ml::error_mitigation::FeatureExtractionMethod::CircuitDepth,
490 },
491 MitigationStrategy::SymmetryVerification {
492 symmetry_groups: vec![SymmetryGroup; 2],
493 verification_circuits: vec![VerificationCircuit; 5],
494 post_selection: true,
495 },
496 MitigationStrategy::VirtualDistillation {
497 distillation_rounds: 2,
498 entanglement_protocol: EntanglementProtocol::Bell,
499 purification_threshold: 0.8,
500 },
501 MitigationStrategy::MLMitigation {
502 noise_predictor: NoisePredictorModel,
503 correction_network: CorrectionNetwork,
504 training_data: TrainingDataSet,
505 },
506 ])
507}
508
509const fn get_strategy_name(strategy: &MitigationStrategy) -> &'static str {
510 match strategy {
511 MitigationStrategy::ZNE { .. } => "Zero Noise Extrapolation",
512 MitigationStrategy::ReadoutErrorMitigation { .. } => "Readout Error Mitigation",
513 MitigationStrategy::CDR { .. } => "Clifford Data Regression",
514 MitigationStrategy::SymmetryVerification { .. } => "Symmetry Verification",
515 MitigationStrategy::VirtualDistillation { .. } => "Virtual Distillation",
516 MitigationStrategy::MLMitigation { .. } => "ML-based Mitigation",
517 MitigationStrategy::HybridErrorCorrection { .. } => "Hybrid Error Correction",
518 MitigationStrategy::AdaptiveMultiStrategy { .. } => "Adaptive Multi-Strategy",
519 }
520}
521
522fn create_test_qml_circuit(num_qubits: usize, num_layers: usize) -> Result<QuantumCircuit> {
523 let gates = vec![
524 QuantumGate {
525 name: "RY".to_string(),
526 qubits: vec![0],
527 parameters: Array1::from_vec(vec![0.1]),
528 };
529 num_layers * num_qubits
530 ];
531
532 Ok(QuantumCircuit {
533 gates,
534 qubits: num_qubits,
535 })
536}
537
538fn calculate_average_error_rate(noise_model: &NoiseModel) -> f64 {
539 noise_model
540 .gate_errors
541 .values()
542 .map(|error| error.error_rate)
543 .sum::<f64>()
544 / noise_model.gate_errors.len() as f64
545}
546
547fn estimate_circuit_depth(circuit: &QuantumCircuit) -> usize {
548 circuit.gates.len()
549}
550
551fn simulate_noisy_measurements(
552 circuit: &QuantumCircuit,
553 noise_model: &NoiseModel,
554 num_shots: usize,
555) -> Result<Array2<f64>> {
556 // Simulate noisy measurements with realistic noise
557 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
558
559 for i in 0..num_shots {
560 for j in 0..circuit.num_qubits() {
561 let ideal_prob = 0.5; // Ideal measurement probability
562 let noise_factor = fastrand::f64().mul_add(0.1, -0.05); // ±5% noise
563 let noisy_prob = (ideal_prob + noise_factor).max(0.0).min(1.0);
564 measurements[[i, j]] = if fastrand::f64() < noisy_prob {
565 1.0
566 } else {
567 0.0
568 };
569 }
570 }
571
572 Ok(measurements)
573}
574
575fn simulate_noisy_gradients(
576 circuit: &QuantumCircuit,
577 parameters: &Array1<f64>,
578 noise_model: &NoiseModel,
579) -> Result<Array1<f64>> {
580 // Simulate parameter shift gradients with noise
581 let mut gradients = Array1::zeros(parameters.len());
582
583 for i in 0..parameters.len() {
584 let ideal_gradient = (i as f64 + 1.0) * 0.1; // Mock ideal gradient
585 let noise_std = 0.05; // Gradient noise standard deviation
586 let noise = (fastrand::f64() * noise_std).mul_add(2.0, -noise_std);
587 gradients[i] = ideal_gradient + noise;
588 }
589
590 Ok(gradients)
591}
592
593fn assess_noise_level(measurements: &Array2<f64>) -> f64 {
594 // Calculate empirical noise level from measurements
595 let bit_flip_rate = measurements
596 .iter()
597 .zip(measurements.iter().skip(1))
598 .map(|(&a, &b)| if a == b { 0.0 } else { 1.0 })
599 .sum::<f64>()
600 / (measurements.len() - 1) as f64;
601
602 bit_flip_rate.min(0.5) // Cap at 50%
603}
604
605fn calculate_improvement(noisy: &Array2<f64>, mitigated: &Array2<f64>) -> Result<f64> {
606 // Calculate improvement metric (simplified)
607 let noisy_variance = noisy.var(0.0);
608 let mitigated_variance = mitigated.var(0.0);
609
610 Ok((noisy_variance - mitigated_variance) / noisy_variance)
611}
612
613// Additional helper functions for demonstrations
614
615fn demonstrate_zne_mitigation(
616 circuit: &QuantumCircuit,
617 noise_model: &NoiseModel,
618) -> Result<ZNEResult> {
619 Ok(ZNEResult {
620 extrapolated_fidelity: 0.98,
621 confidence_interval: (0.96, 0.99),
622 scaling_factors_used: vec![1.0, 2.0, 3.0],
623 })
624}
625
626const fn demonstrate_readout_mitigation(
627 circuit: &QuantumCircuit,
628 noise_model: &NoiseModel,
629) -> Result<ReadoutResult> {
630 Ok(ReadoutResult {
631 correction_accuracy: 0.92,
632 condition_number: 12.5,
633 assignment_matrix_rank: 4,
634 })
635}
636
637const fn demonstrate_cdr_mitigation(
638 circuit: &QuantumCircuit,
639 noise_model: &NoiseModel,
640) -> Result<CDRResult> {
641 Ok(CDRResult {
642 r_squared: 0.89,
643 prediction_accuracy: 0.87,
644 training_circuits_used: 100,
645 })
646}
647
648const fn demonstrate_virtual_distillation(
649 circuit: &QuantumCircuit,
650 noise_model: &NoiseModel,
651) -> Result<VDResult> {
652 Ok(VDResult {
653 distillation_fidelity: 0.94,
654 resource_overhead: 2.5,
655 distillation_rounds: 2,
656 })
657}
658
659const fn demonstrate_ml_mitigation(
660 circuit: &QuantumCircuit,
661 noise_model: &NoiseModel,
662) -> Result<MLMitigationResult> {
663 Ok(MLMitigationResult {
664 nn_accuracy: 0.91,
665 prediction_mse: 0.003,
666 correction_effectiveness: 0.85,
667 })
668}
669
670// Supporting structures for demo results
671
672#[derive(Debug)]
673struct ZNEResult {
674 extrapolated_fidelity: f64,
675 confidence_interval: (f64, f64),
676 scaling_factors_used: Vec<f64>,
677}
678
679#[derive(Debug)]
680struct ReadoutResult {
681 correction_accuracy: f64,
682 condition_number: f64,
683 assignment_matrix_rank: usize,
684}
685
686#[derive(Debug)]
687struct CDRResult {
688 r_squared: f64,
689 prediction_accuracy: f64,
690 training_circuits_used: usize,
691}
692
693#[derive(Debug)]
694struct VDResult {
695 distillation_fidelity: f64,
696 resource_overhead: f64,
697 distillation_rounds: usize,
698}
699
700#[derive(Debug)]
701struct MLMitigationResult {
702 nn_accuracy: f64,
703 prediction_mse: f64,
704 correction_effectiveness: f64,
705}
706
707#[derive(Debug)]
708struct RealtimeResults {
709 response_time_ms: f64,
710 adaptation_accuracy: f64,
711 performance_gain: f64,
712}
713
714#[derive(Debug)]
715struct ResourceAnalysis {
716 avg_computational_overhead: f64,
717 memory_overhead: f64,
718 classical_time_ms: f64,
719 quantum_overhead: f64,
720}
721
722#[derive(Debug)]
723struct QuantumAdvantageAnalysis {
724 effective_quantum_volume: usize,
725 mitigated_fidelity: f64,
726 classical_simulation_cost: f64,
727 practical_advantage: bool,
728}
729
730// Additional helper function implementations
731
732const fn create_smart_selection_policy() -> Result<StrategySelectionPolicy> {
733 Ok(StrategySelectionPolicy)
734}
735
736fn create_performance_tracker() -> Result<quantrs2_ml::error_mitigation::PerformanceTracker> {
737 Ok(quantrs2_ml::error_mitigation::PerformanceTracker::default())
738}
739
740fn simulate_dynamic_noise(base_noise: &NoiseModel, step: usize) -> Result<NoiseModel> {
741 // Simulate time-varying noise
742 let mut dynamic_noise = base_noise.clone();
743 let time_factor = 0.1f64.mul_add((step as f64 * 0.1).sin(), 1.0);
744
745 for error_model in dynamic_noise.gate_errors.values_mut() {
746 error_model.error_rate *= time_factor;
747 }
748
749 Ok(dynamic_noise)
750}
751
752fn simulate_training_step_measurements(
753 circuit: &QuantumCircuit,
754 step: usize,
755) -> Result<Array2<f64>> {
756 // Simulate measurements for a training step
757 let num_shots = 100;
758 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
759
760 for i in 0..num_shots {
761 for j in 0..circuit.num_qubits() {
762 let step_bias = step as f64 * 0.01;
763 let prob = fastrand::f64().mul_add(0.1, 0.5 + step_bias) - 0.05;
764 measurements[[i, j]] = if fastrand::f64() < prob.max(0.0).min(1.0) {
765 1.0
766 } else {
767 0.0
768 };
769 }
770 }
771
772 Ok(measurements)
773}pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self>
pub fn clone(&self) -> Self
Trait Implementations§
Source§impl Clone for QuantumCircuit
impl Clone for QuantumCircuit
Source§fn clone(&self) -> QuantumCircuit
fn clone(&self) -> QuantumCircuit
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumCircuit
impl RefUnwindSafe for QuantumCircuit
impl Send for QuantumCircuit
impl Sync for QuantumCircuit
impl Unpin for QuantumCircuit
impl UnwindSafe for QuantumCircuit
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.