QuantumLLMConfig

Struct QuantumLLMConfig 

Source
pub struct QuantumLLMConfig {
    pub transformer_config: QuantumTransformerConfig,
    pub vocab_size: usize,
    pub max_context_length: usize,
    pub quantum_memory_layers: usize,
    pub reasoning_config: QuantumReasoningConfig,
    pub memory_config: QuantumMemoryConfig,
    pub model_scale: ModelScale,
    pub training_config: QLLMTrainingConfig,
}
Expand description

Quantum Large Language Model configuration

Fields§

§transformer_config: QuantumTransformerConfig

Base transformer configuration

§vocab_size: usize

Vocabulary size

§max_context_length: usize

Maximum context length

§quantum_memory_layers: usize

Number of quantum memory layers

§reasoning_config: QuantumReasoningConfig

Quantum reasoning module configuration

§memory_config: QuantumMemoryConfig

Quantum memory configuration

§model_scale: ModelScale

Model scale

§training_config: QLLMTrainingConfig

Training configuration

Implementations§

Source§

impl QuantumLLMConfig

Source

pub fn small(vocab_size: usize) -> Self

Create small model configuration

Examples found in repository?
examples/quantum_llm.rs (line 70)
64fn model_configurations_demo() -> Result<()> {
65    println!("   Creating quantum LLM configurations...");
66
67    let vocab_size = 50000;
68
69    // Small model for edge deployment
70    let small_config = QuantumLLMConfig::small(vocab_size);
71    println!("   Small Model Configuration:");
72    println!("   - Vocabulary size: {}", small_config.vocab_size);
73    println!(
74        "   - Model dimension: {}",
75        small_config.transformer_config.model_dim
76    );
77    println!(
78        "   - Number of heads: {}",
79        small_config.transformer_config.num_heads
80    );
81    println!(
82        "   - Number of layers: {}",
83        small_config.transformer_config.num_layers
84    );
85    println!(
86        "   - Quantum qubits: {}",
87        small_config.transformer_config.num_qubits
88    );
89    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
90
91    let small_model = QuantumLLM::new(small_config)?;
92    println!(
93        "   Small model parameters: {:.1}M",
94        small_model.num_parameters() as f64 / 1_000_000.0
95    );
96
97    // Medium model for general use
98    let medium_config = QuantumLLMConfig::medium(vocab_size);
99    println!("\n   Medium Model Configuration:");
100    println!(
101        "   - Model dimension: {}",
102        medium_config.transformer_config.model_dim
103    );
104    println!(
105        "   - Number of layers: {}",
106        medium_config.transformer_config.num_layers
107    );
108    println!(
109        "   - Quantum qubits: {}",
110        medium_config.transformer_config.num_qubits
111    );
112    println!(
113        "   - Max context length: {}",
114        medium_config.max_context_length
115    );
116
117    let medium_model = QuantumLLM::new(medium_config)?;
118    println!(
119        "   Medium model parameters: {:.1}M",
120        medium_model.num_parameters() as f64 / 1_000_000.0
121    );
122
123    // Large model for research and advanced applications
124    let large_config = QuantumLLMConfig::large(vocab_size);
125    println!("\n   Large Model Configuration:");
126    println!(
127        "   - Model dimension: {}",
128        large_config.transformer_config.model_dim
129    );
130    println!(
131        "   - Number of layers: {}",
132        large_config.transformer_config.num_layers
133    );
134    println!(
135        "   - Quantum qubits: {}",
136        large_config.transformer_config.num_qubits
137    );
138    println!(
139        "   - Max context length: {}",
140        large_config.max_context_length
141    );
142    println!(
143        "   - Reasoning steps: {}",
144        large_config.reasoning_config.reasoning_steps
145    );
146
147    let large_model = QuantumLLM::new(large_config)?;
148    println!(
149        "   Large model parameters: {:.1}B",
150        large_model.num_parameters() as f64 / 1_000_000_000.0
151    );
152
153    // Compare quantum vs classical parameter efficiency
154    println!("\n   Quantum Efficiency Analysis:");
155    let quantum_efficiency =
156        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
157    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
158
159    Ok(())
160}
161
162/// Demonstrate quantum memory systems
163fn quantum_memory_demo() -> Result<()> {
164    println!("   Testing quantum memory systems...");
165
166    // Test different memory configurations
167    let memory_configs = vec![
168        ("Basic Associative", QuantumMemoryConfig::default()),
169        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
170        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
171    ];
172
173    for (name, config) in memory_configs {
174        println!("\n   --- {name} Memory ---");
175
176        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
177        println!("   Memory configuration:");
178        println!("   - Memory size: {}", config.memory_size);
179        println!("   - Associative memory: {}", config.associative_memory);
180        println!("   - Episodic memory: {}", config.episodic_memory);
181        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
182        println!("   - Quantum compression: {}", config.quantum_compression);
183
184        // Test memory storage and retrieval
185        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
186            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
187        });
188
189        // Enhance embeddings with memory
190        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
191        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
192
193        // Measure memory enhancement effect
194        let original_variance = test_embeddings.var(0.0);
195        let enhanced_variance = enhanced.var(0.0);
196        let enhancement_factor = enhanced_variance / original_variance;
197
198        println!("   Memory enhancement factor: {enhancement_factor:.3}");
199
200        // Test memory update
201        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
202        memory_system.update_memory(&enhanced, &input_ids)?;
203
204        println!("   Memory updated with new experiences");
205
206        // Test memory retrieval patterns
207        test_memory_patterns(&memory_system, &config)?;
208    }
209
210    Ok(())
211}
212
213/// Demonstrate quantum reasoning capabilities
214fn quantum_reasoning_demo() -> Result<()> {
215    println!("   Testing quantum reasoning modules...");
216
217    let reasoning_configs = vec![
218        ("Basic Logical", QuantumReasoningConfig::default()),
219        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
220        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
221    ];
222
223    for (name, config) in reasoning_configs {
224        println!("\n   --- {name} Reasoning ---");
225
226        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
227
228        println!("   Reasoning capabilities:");
229        println!("   - Logical reasoning: {}", config.logical_reasoning);
230        println!("   - Causal reasoning: {}", config.causal_reasoning);
231        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
232        println!("   - Reasoning steps: {}", config.reasoning_steps);
233        println!("   - Circuit depth: {}", config.circuit_depth);
234        println!(
235            "   - Entanglement strength: {:.2}",
236            config.entanglement_strength
237        );
238
239        // Test reasoning on sample hidden states
240        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
241            // Create patterns that require reasoning
242            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
243            let causal_pattern = s as f64 * 0.1;
244            let base_value = logical_pattern + causal_pattern;
245
246            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
247        });
248
249        println!("   Input hidden states shape: {:?}", hidden_states.dim());
250
251        // Apply quantum reasoning
252        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
253        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
254
255        // Analyze reasoning effects
256        let reasoning_enhancement =
257            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
258        println!("   Reasoning enhancement metrics:");
259        println!(
260            "   - Pattern amplification: {:.3}",
261            reasoning_enhancement.pattern_amplification
262        );
263        println!(
264            "   - Logical consistency: {:.3}",
265            reasoning_enhancement.logical_consistency
266        );
267        println!(
268            "   - Causal coherence: {:.3}",
269            reasoning_enhancement.causal_coherence
270        );
271
272        // Test quantum coherence during reasoning
273        let coherence = reasoning_module.measure_coherence()?;
274        println!("   Quantum coherence: {coherence:.3}");
275
276        // Test token selection enhancement
277        let sample_logits = Array1::from_shape_fn(1000, |i| {
278            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
279        });
280
281        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
282        let enhancement_effect = (&enhanced_logits - &sample_logits)
283            .mapv(f64::abs)
284            .mean()
285            .unwrap_or(0.0);
286        println!("   Token selection enhancement: {enhancement_effect:.4}");
287    }
288
289    Ok(())
290}
291
292/// Demonstrate quantum-enhanced text generation
293fn text_generation_demo() -> Result<()> {
294    println!("   Testing quantum-enhanced text generation...");
295
296    let config = QuantumLLMConfig::small(10000);
297    let mut model = QuantumLLM::new(config)?;
298
299    // Test different generation configurations
300    let generation_configs = vec![
301        ("Default", GenerationConfig::default()),
302        ("Creative", GenerationConfig::creative()),
303        ("Precise", GenerationConfig::precise()),
304    ];
305
306    let test_prompts = [
307        "The quantum computer",
308        "Artificial intelligence will",
309        "In the future, quantum computing",
310        "The relationship between quantum mechanics and consciousness",
311    ];
312
313    for (config_name, gen_config) in generation_configs {
314        println!("\n   --- {config_name} Generation ---");
315        println!("   Configuration:");
316        println!("   - Max length: {}", gen_config.max_length);
317        println!("   - Temperature: {:.1}", gen_config.temperature);
318        println!("   - Top-k: {:?}", gen_config.top_k);
319        println!("   - Top-p: {:?}", gen_config.top_p);
320        println!(
321            "   - Quantum reasoning: {}",
322            gen_config.use_quantum_reasoning
323        );
324        println!("   - Memory usage: {}", gen_config.use_memory);
325        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
326
327        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
328            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
329
330            let start_time = std::time::Instant::now();
331            let generated = model.generate(prompt, gen_config.clone())?;
332            let generation_time = start_time.elapsed();
333
334            // Display partial generated text (first 100 chars)
335            let display_text = if generated.len() > 100 {
336                format!("{}...", &generated[..100])
337            } else {
338                generated.clone()
339            };
340
341            println!("   Generated: \"{display_text}\"");
342            println!("   Generation time: {generation_time:.2?}");
343
344            // Analyze generation quality
345            let quality = analyze_generation_quality(&generated, &gen_config)?;
346            println!("   Quality metrics:");
347            println!("   - Fluency: {:.2}", quality.fluency);
348            println!("   - Coherence: {:.2}", quality.coherence);
349            println!("   - Novelty: {:.2}", quality.novelty);
350            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
351        }
352    }
353
354    // Display generation statistics
355    let stats = model.generation_stats();
356    println!("\n   Generation Statistics:");
357    println!("   - Total tokens generated: {}", stats.total_tokens);
358    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
359    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
360    println!("   - Memory retrievals: {}", stats.memory_retrievals);
361
362    Ok(())
363}
364
365/// Demonstrate language understanding capabilities
366fn language_understanding_demo() -> Result<()> {
367    println!("   Testing quantum language understanding...");
368
369    let config = QuantumLLMConfig::medium(20000);
370    let mut model = QuantumLLM::new(config)?;
371
372    // Test different understanding tasks
373    let understanding_tasks = vec![
374        ("Reading Comprehension", vec![
375            "The photon exhibits wave-particle duality in quantum mechanics.",
376            "What properties does a photon exhibit according to quantum mechanics?",
377        ]),
378        ("Logical Reasoning", vec![
379            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
380            "Apply logical reasoning to derive the conclusion.",
381        ]),
382        ("Causal Understanding", vec![
383            "When a quantum measurement is performed, the wavefunction collapses.",
384            "What causes the wavefunction to collapse?",
385        ]),
386        ("Analogical Reasoning", vec![
387            "Quantum superposition is like a coin spinning in the air before landing.",
388            "How is quantum entanglement similar to this analogy?",
389        ]),
390    ];
391
392    for (task_name, texts) in understanding_tasks {
393        println!("\n   --- {task_name} Task ---");
394
395        for (i, text) in texts.iter().enumerate() {
396            println!("   Input {}: \"{}\"", i + 1, text);
397
398            // Process text through model
399            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
400
401            // Enable different reasoning modes based on task
402            let use_reasoning = match task_name {
403                "Logical Reasoning" => true,
404                "Causal Understanding" => true,
405                "Analogical Reasoning" => true,
406                _ => false,
407            };
408
409            let use_memory = true;
410
411            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
412            println!("   Model output shape: {:?}", output.dim());
413
414            // Analyze understanding quality
415            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
416            println!("   Understanding score: {understanding_score:.3}");
417        }
418
419        // Task-specific analysis
420        match task_name {
421            "Reading Comprehension" => {
422                println!("   ✓ Model shows information extraction capabilities");
423            }
424            "Logical Reasoning" => {
425                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
426            }
427            "Causal Understanding" => {
428                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
429            }
430            "Analogical Reasoning" => {
431                println!("   ✓ Quantum analogy engine maps structural similarities");
432            }
433            _ => {}
434        }
435    }
436
437    Ok(())
438}
439
440/// Demonstrate chain-of-thought reasoning
441fn chain_of_thought_demo() -> Result<()> {
442    println!("   Testing quantum chain-of-thought reasoning...");
443
444    let config = QuantumLLMConfig::large(30000);
445    let mut model = QuantumLLM::new(config)?;
446
447    let reasoning_problems = vec![
448        ("Mathematical Problem",
449         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
450        ("Physics Problem",
451         "Explain how quantum entanglement enables quantum teleportation step by step."),
452        ("Logic Problem",
453         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
454        ("Ethics Problem",
455         "What are the implications of quantum computing for cryptography and privacy?"),
456    ];
457
458    for (problem_type, prompt) in reasoning_problems {
459        println!("\n   --- {problem_type} ---");
460        println!("   Problem: \"{prompt}\"");
461
462        // Enable chain-of-thought generation
463        let cot_config = GenerationConfig {
464            max_length: 200,
465            temperature: 0.8,
466            top_k: Some(40),
467            top_p: Some(0.9),
468            repetition_penalty: 1.1,
469            use_quantum_reasoning: true,
470            use_memory: true,
471            chain_of_thought: true,
472        };
473
474        let start_time = std::time::Instant::now();
475        let reasoning_output = model.generate(prompt, cot_config)?;
476        let reasoning_time = start_time.elapsed();
477
478        // Display reasoning steps (truncated for readability)
479        let display_output = if reasoning_output.len() > 200 {
480            format!("{}...", &reasoning_output[..200])
481        } else {
482            reasoning_output.clone()
483        };
484
485        println!("   Chain-of-thought reasoning:");
486        println!("   \"{display_output}\"");
487        println!("   Reasoning time: {reasoning_time:.2?}");
488
489        // Analyze reasoning quality
490        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
491        println!("   Reasoning analysis:");
492        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
493        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
494        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
495        println!(
496            "   - Quantum enhancement: {:.3}",
497            reasoning_analysis.quantum_enhancement
498        );
499
500        // Check for quantum reasoning patterns
501        if reasoning_analysis.quantum_enhancement > 0.5 {
502            println!("   ✓ Strong quantum reasoning signature detected");
503        } else if reasoning_analysis.quantum_enhancement > 0.2 {
504            println!("   ~ Moderate quantum reasoning influence");
505        } else {
506            println!("   - Limited quantum reasoning detected");
507        }
508    }
509
510    Ok(())
511}
512
513/// Demonstrate multi-modal quantum language processing
514fn multimodal_demo() -> Result<()> {
515    println!("   Testing multi-modal quantum language processing...");
516
517    let config = QuantumLLMConfig::medium(25000);
518    let mut model = QuantumLLM::new(config)?;
519
520    // Simulate different modalities
521    let multimodal_tasks = vec![
522        (
523            "Text + Quantum Data",
524            "Analyze this quantum measurement sequence",
525        ),
526        (
527            "Text + Mathematical",
528            "Solve this quantum mechanics equation",
529        ),
530        ("Text + Logical", "Apply quantum logic to this proposition"),
531        (
532            "Text + Memory",
533            "Recall information about quantum algorithms",
534        ),
535    ];
536
537    for (modality, task_description) in multimodal_tasks {
538        println!("\n   --- {modality} Processing ---");
539        println!("   Task: \"{task_description}\"");
540
541        // Create synthetic multi-modal input
542        let text_input =
543            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
544
545        // Enable all quantum capabilities for multi-modal processing
546        let output = model.forward(&text_input, None, true, true)?;
547
548        println!("   Multi-modal output shape: {:?}", output.dim());
549
550        // Analyze multi-modal integration
551        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
552        println!("   Integration metrics:");
553        println!(
554            "   - Cross-modal coherence: {:.3}",
555            integration_quality.coherence
556        );
557        println!(
558            "   - Information fusion: {:.3}",
559            integration_quality.fusion_quality
560        );
561        println!(
562            "   - Quantum entanglement: {:.3}",
563            integration_quality.quantum_entanglement
564        );
565
566        // Test specific capabilities based on modality
567        match modality {
568            "Text + Quantum Data" => {
569                let quantum_analysis = analyze_quantum_data_processing(&output)?;
570                println!(
571                    "   - Quantum state recognition: {:.3}",
572                    quantum_analysis.state_recognition
573                );
574                println!(
575                    "   - Measurement prediction: {:.3}",
576                    quantum_analysis.measurement_prediction
577                );
578            }
579            "Text + Mathematical" => {
580                let math_analysis = analyze_mathematical_reasoning(&output)?;
581                println!(
582                    "   - Equation understanding: {:.3}",
583                    math_analysis.equation_understanding
584                );
585                println!(
586                    "   - Symbol manipulation: {:.3}",
587                    math_analysis.symbol_manipulation
588                );
589            }
590            "Text + Logical" => {
591                let logic_analysis = analyze_logical_processing(&output)?;
592                println!("   - Logical validity: {:.3}", logic_analysis.validity);
593                println!(
594                    "   - Inference quality: {:.3}",
595                    logic_analysis.inference_quality
596                );
597            }
598            "Text + Memory" => {
599                let memory_analysis = analyze_memory_retrieval(&output)?;
600                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
601                println!(
602                    "   - Retrieval efficiency: {:.3}",
603                    memory_analysis.efficiency
604                );
605            }
606            _ => {}
607        }
608    }
609
610    Ok(())
611}
612
613/// Demonstrate performance analysis and quantum advantage
614fn performance_analysis_demo() -> Result<()> {
615    println!("   Analyzing performance and quantum advantage...");
616
617    // Create models of different scales
618    let small_config = QuantumLLMConfig::small(10000);
619    let medium_config = QuantumLLMConfig::medium(20000);
620    let large_config = QuantumLLMConfig::large(50000);
621
622    let small_model = QuantumLLM::new(small_config)?;
623    let medium_model = QuantumLLM::new(medium_config)?;
624    let large_model = QuantumLLM::new(large_config)?;
625
626    let models = vec![
627        ("Small", &small_model),
628        ("Medium", &medium_model),
629        ("Large", &large_model),
630    ];
631
632    println!("\n   Model Comparison:");
633
634    for (name, model) in &models {
635        let config = model.config();
636        let params = model.num_parameters();
637
638        println!("   {name} Model:");
639        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
640        println!(
641            "   - Model dimension: {}",
642            config.transformer_config.model_dim
643        );
644        println!(
645            "   - Quantum qubits: {}",
646            config.transformer_config.num_qubits
647        );
648        println!("   - Memory size: {}", config.memory_config.memory_size);
649        println!(
650            "   - Reasoning steps: {}",
651            config.reasoning_config.reasoning_steps
652        );
653
654        // Estimate quantum advantage
655        let quantum_advantage = estimate_quantum_advantage(model)?;
656        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
657        println!(
658            "   - Memory efficiency: {:.2}x",
659            quantum_advantage.memory_efficiency
660        );
661        println!(
662            "   - Reasoning enhancement: {:.2}x",
663            quantum_advantage.reasoning_enhancement
664        );
665    }
666
667    // Performance benchmarks
668    println!("\n   Performance Benchmarks:");
669
670    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
671        ("Text Generation", measure_generation_performance),
672        ("Language Understanding", measure_understanding_performance),
673        ("Reasoning Tasks", measure_reasoning_performance),
674        ("Memory Operations", measure_memory_performance),
675    ];
676
677    for (task_name, benchmark_fn) in benchmark_tasks {
678        println!("\n   {task_name} Benchmark:");
679
680        for (model_name, model) in &models {
681            let performance = benchmark_fn(model)?;
682            println!(
683                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
684                model_name, performance.operations_per_sec, performance.memory_usage_mb
685            );
686        }
687    }
688
689    // Quantum scaling analysis
690    println!("\n   Quantum Scaling Analysis:");
691    let scaling_analysis = analyze_quantum_scaling(&models)?;
692    println!(
693        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
694        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
695    );
696    println!(
697        "   - Performance scaling: {:.2}",
698        scaling_analysis.performance_scaling
699    );
700    println!(
701        "   - Quantum efficiency: {:.1}%",
702        scaling_analysis.efficiency * 100.0
703    );
704
705    // Future projections
706    println!("\n   Future Projections:");
707    println!(
708        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
709        project_future_efficiency(100_000_000_000)
710    );
711    println!(
712        "   - Quantum coherence preservation: {:.1}%",
713        project_coherence_preservation() * 100.0
714    );
715    println!(
716        "   - Reasoning capability enhancement: {:.2}x",
717        project_reasoning_enhancement()
718    );
719
720    Ok(())
721}
Source

pub fn medium(vocab_size: usize) -> Self

Create medium model configuration

Examples found in repository?
examples/quantum_llm.rs (line 98)
64fn model_configurations_demo() -> Result<()> {
65    println!("   Creating quantum LLM configurations...");
66
67    let vocab_size = 50000;
68
69    // Small model for edge deployment
70    let small_config = QuantumLLMConfig::small(vocab_size);
71    println!("   Small Model Configuration:");
72    println!("   - Vocabulary size: {}", small_config.vocab_size);
73    println!(
74        "   - Model dimension: {}",
75        small_config.transformer_config.model_dim
76    );
77    println!(
78        "   - Number of heads: {}",
79        small_config.transformer_config.num_heads
80    );
81    println!(
82        "   - Number of layers: {}",
83        small_config.transformer_config.num_layers
84    );
85    println!(
86        "   - Quantum qubits: {}",
87        small_config.transformer_config.num_qubits
88    );
89    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
90
91    let small_model = QuantumLLM::new(small_config)?;
92    println!(
93        "   Small model parameters: {:.1}M",
94        small_model.num_parameters() as f64 / 1_000_000.0
95    );
96
97    // Medium model for general use
98    let medium_config = QuantumLLMConfig::medium(vocab_size);
99    println!("\n   Medium Model Configuration:");
100    println!(
101        "   - Model dimension: {}",
102        medium_config.transformer_config.model_dim
103    );
104    println!(
105        "   - Number of layers: {}",
106        medium_config.transformer_config.num_layers
107    );
108    println!(
109        "   - Quantum qubits: {}",
110        medium_config.transformer_config.num_qubits
111    );
112    println!(
113        "   - Max context length: {}",
114        medium_config.max_context_length
115    );
116
117    let medium_model = QuantumLLM::new(medium_config)?;
118    println!(
119        "   Medium model parameters: {:.1}M",
120        medium_model.num_parameters() as f64 / 1_000_000.0
121    );
122
123    // Large model for research and advanced applications
124    let large_config = QuantumLLMConfig::large(vocab_size);
125    println!("\n   Large Model Configuration:");
126    println!(
127        "   - Model dimension: {}",
128        large_config.transformer_config.model_dim
129    );
130    println!(
131        "   - Number of layers: {}",
132        large_config.transformer_config.num_layers
133    );
134    println!(
135        "   - Quantum qubits: {}",
136        large_config.transformer_config.num_qubits
137    );
138    println!(
139        "   - Max context length: {}",
140        large_config.max_context_length
141    );
142    println!(
143        "   - Reasoning steps: {}",
144        large_config.reasoning_config.reasoning_steps
145    );
146
147    let large_model = QuantumLLM::new(large_config)?;
148    println!(
149        "   Large model parameters: {:.1}B",
150        large_model.num_parameters() as f64 / 1_000_000_000.0
151    );
152
153    // Compare quantum vs classical parameter efficiency
154    println!("\n   Quantum Efficiency Analysis:");
155    let quantum_efficiency =
156        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
157    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
158
159    Ok(())
160}
161
162/// Demonstrate quantum memory systems
163fn quantum_memory_demo() -> Result<()> {
164    println!("   Testing quantum memory systems...");
165
166    // Test different memory configurations
167    let memory_configs = vec![
168        ("Basic Associative", QuantumMemoryConfig::default()),
169        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
170        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
171    ];
172
173    for (name, config) in memory_configs {
174        println!("\n   --- {name} Memory ---");
175
176        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
177        println!("   Memory configuration:");
178        println!("   - Memory size: {}", config.memory_size);
179        println!("   - Associative memory: {}", config.associative_memory);
180        println!("   - Episodic memory: {}", config.episodic_memory);
181        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
182        println!("   - Quantum compression: {}", config.quantum_compression);
183
184        // Test memory storage and retrieval
185        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
186            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
187        });
188
189        // Enhance embeddings with memory
190        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
191        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
192
193        // Measure memory enhancement effect
194        let original_variance = test_embeddings.var(0.0);
195        let enhanced_variance = enhanced.var(0.0);
196        let enhancement_factor = enhanced_variance / original_variance;
197
198        println!("   Memory enhancement factor: {enhancement_factor:.3}");
199
200        // Test memory update
201        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
202        memory_system.update_memory(&enhanced, &input_ids)?;
203
204        println!("   Memory updated with new experiences");
205
206        // Test memory retrieval patterns
207        test_memory_patterns(&memory_system, &config)?;
208    }
209
210    Ok(())
211}
212
213/// Demonstrate quantum reasoning capabilities
214fn quantum_reasoning_demo() -> Result<()> {
215    println!("   Testing quantum reasoning modules...");
216
217    let reasoning_configs = vec![
218        ("Basic Logical", QuantumReasoningConfig::default()),
219        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
220        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
221    ];
222
223    for (name, config) in reasoning_configs {
224        println!("\n   --- {name} Reasoning ---");
225
226        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
227
228        println!("   Reasoning capabilities:");
229        println!("   - Logical reasoning: {}", config.logical_reasoning);
230        println!("   - Causal reasoning: {}", config.causal_reasoning);
231        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
232        println!("   - Reasoning steps: {}", config.reasoning_steps);
233        println!("   - Circuit depth: {}", config.circuit_depth);
234        println!(
235            "   - Entanglement strength: {:.2}",
236            config.entanglement_strength
237        );
238
239        // Test reasoning on sample hidden states
240        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
241            // Create patterns that require reasoning
242            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
243            let causal_pattern = s as f64 * 0.1;
244            let base_value = logical_pattern + causal_pattern;
245
246            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
247        });
248
249        println!("   Input hidden states shape: {:?}", hidden_states.dim());
250
251        // Apply quantum reasoning
252        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
253        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
254
255        // Analyze reasoning effects
256        let reasoning_enhancement =
257            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
258        println!("   Reasoning enhancement metrics:");
259        println!(
260            "   - Pattern amplification: {:.3}",
261            reasoning_enhancement.pattern_amplification
262        );
263        println!(
264            "   - Logical consistency: {:.3}",
265            reasoning_enhancement.logical_consistency
266        );
267        println!(
268            "   - Causal coherence: {:.3}",
269            reasoning_enhancement.causal_coherence
270        );
271
272        // Test quantum coherence during reasoning
273        let coherence = reasoning_module.measure_coherence()?;
274        println!("   Quantum coherence: {coherence:.3}");
275
276        // Test token selection enhancement
277        let sample_logits = Array1::from_shape_fn(1000, |i| {
278            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
279        });
280
281        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
282        let enhancement_effect = (&enhanced_logits - &sample_logits)
283            .mapv(f64::abs)
284            .mean()
285            .unwrap_or(0.0);
286        println!("   Token selection enhancement: {enhancement_effect:.4}");
287    }
288
289    Ok(())
290}
291
292/// Demonstrate quantum-enhanced text generation
293fn text_generation_demo() -> Result<()> {
294    println!("   Testing quantum-enhanced text generation...");
295
296    let config = QuantumLLMConfig::small(10000);
297    let mut model = QuantumLLM::new(config)?;
298
299    // Test different generation configurations
300    let generation_configs = vec![
301        ("Default", GenerationConfig::default()),
302        ("Creative", GenerationConfig::creative()),
303        ("Precise", GenerationConfig::precise()),
304    ];
305
306    let test_prompts = [
307        "The quantum computer",
308        "Artificial intelligence will",
309        "In the future, quantum computing",
310        "The relationship between quantum mechanics and consciousness",
311    ];
312
313    for (config_name, gen_config) in generation_configs {
314        println!("\n   --- {config_name} Generation ---");
315        println!("   Configuration:");
316        println!("   - Max length: {}", gen_config.max_length);
317        println!("   - Temperature: {:.1}", gen_config.temperature);
318        println!("   - Top-k: {:?}", gen_config.top_k);
319        println!("   - Top-p: {:?}", gen_config.top_p);
320        println!(
321            "   - Quantum reasoning: {}",
322            gen_config.use_quantum_reasoning
323        );
324        println!("   - Memory usage: {}", gen_config.use_memory);
325        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
326
327        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
328            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
329
330            let start_time = std::time::Instant::now();
331            let generated = model.generate(prompt, gen_config.clone())?;
332            let generation_time = start_time.elapsed();
333
334            // Display partial generated text (first 100 chars)
335            let display_text = if generated.len() > 100 {
336                format!("{}...", &generated[..100])
337            } else {
338                generated.clone()
339            };
340
341            println!("   Generated: \"{display_text}\"");
342            println!("   Generation time: {generation_time:.2?}");
343
344            // Analyze generation quality
345            let quality = analyze_generation_quality(&generated, &gen_config)?;
346            println!("   Quality metrics:");
347            println!("   - Fluency: {:.2}", quality.fluency);
348            println!("   - Coherence: {:.2}", quality.coherence);
349            println!("   - Novelty: {:.2}", quality.novelty);
350            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
351        }
352    }
353
354    // Display generation statistics
355    let stats = model.generation_stats();
356    println!("\n   Generation Statistics:");
357    println!("   - Total tokens generated: {}", stats.total_tokens);
358    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
359    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
360    println!("   - Memory retrievals: {}", stats.memory_retrievals);
361
362    Ok(())
363}
364
365/// Demonstrate language understanding capabilities
366fn language_understanding_demo() -> Result<()> {
367    println!("   Testing quantum language understanding...");
368
369    let config = QuantumLLMConfig::medium(20000);
370    let mut model = QuantumLLM::new(config)?;
371
372    // Test different understanding tasks
373    let understanding_tasks = vec![
374        ("Reading Comprehension", vec![
375            "The photon exhibits wave-particle duality in quantum mechanics.",
376            "What properties does a photon exhibit according to quantum mechanics?",
377        ]),
378        ("Logical Reasoning", vec![
379            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
380            "Apply logical reasoning to derive the conclusion.",
381        ]),
382        ("Causal Understanding", vec![
383            "When a quantum measurement is performed, the wavefunction collapses.",
384            "What causes the wavefunction to collapse?",
385        ]),
386        ("Analogical Reasoning", vec![
387            "Quantum superposition is like a coin spinning in the air before landing.",
388            "How is quantum entanglement similar to this analogy?",
389        ]),
390    ];
391
392    for (task_name, texts) in understanding_tasks {
393        println!("\n   --- {task_name} Task ---");
394
395        for (i, text) in texts.iter().enumerate() {
396            println!("   Input {}: \"{}\"", i + 1, text);
397
398            // Process text through model
399            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
400
401            // Enable different reasoning modes based on task
402            let use_reasoning = match task_name {
403                "Logical Reasoning" => true,
404                "Causal Understanding" => true,
405                "Analogical Reasoning" => true,
406                _ => false,
407            };
408
409            let use_memory = true;
410
411            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
412            println!("   Model output shape: {:?}", output.dim());
413
414            // Analyze understanding quality
415            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
416            println!("   Understanding score: {understanding_score:.3}");
417        }
418
419        // Task-specific analysis
420        match task_name {
421            "Reading Comprehension" => {
422                println!("   ✓ Model shows information extraction capabilities");
423            }
424            "Logical Reasoning" => {
425                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
426            }
427            "Causal Understanding" => {
428                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
429            }
430            "Analogical Reasoning" => {
431                println!("   ✓ Quantum analogy engine maps structural similarities");
432            }
433            _ => {}
434        }
435    }
436
437    Ok(())
438}
439
440/// Demonstrate chain-of-thought reasoning
441fn chain_of_thought_demo() -> Result<()> {
442    println!("   Testing quantum chain-of-thought reasoning...");
443
444    let config = QuantumLLMConfig::large(30000);
445    let mut model = QuantumLLM::new(config)?;
446
447    let reasoning_problems = vec![
448        ("Mathematical Problem",
449         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
450        ("Physics Problem",
451         "Explain how quantum entanglement enables quantum teleportation step by step."),
452        ("Logic Problem",
453         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
454        ("Ethics Problem",
455         "What are the implications of quantum computing for cryptography and privacy?"),
456    ];
457
458    for (problem_type, prompt) in reasoning_problems {
459        println!("\n   --- {problem_type} ---");
460        println!("   Problem: \"{prompt}\"");
461
462        // Enable chain-of-thought generation
463        let cot_config = GenerationConfig {
464            max_length: 200,
465            temperature: 0.8,
466            top_k: Some(40),
467            top_p: Some(0.9),
468            repetition_penalty: 1.1,
469            use_quantum_reasoning: true,
470            use_memory: true,
471            chain_of_thought: true,
472        };
473
474        let start_time = std::time::Instant::now();
475        let reasoning_output = model.generate(prompt, cot_config)?;
476        let reasoning_time = start_time.elapsed();
477
478        // Display reasoning steps (truncated for readability)
479        let display_output = if reasoning_output.len() > 200 {
480            format!("{}...", &reasoning_output[..200])
481        } else {
482            reasoning_output.clone()
483        };
484
485        println!("   Chain-of-thought reasoning:");
486        println!("   \"{display_output}\"");
487        println!("   Reasoning time: {reasoning_time:.2?}");
488
489        // Analyze reasoning quality
490        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
491        println!("   Reasoning analysis:");
492        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
493        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
494        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
495        println!(
496            "   - Quantum enhancement: {:.3}",
497            reasoning_analysis.quantum_enhancement
498        );
499
500        // Check for quantum reasoning patterns
501        if reasoning_analysis.quantum_enhancement > 0.5 {
502            println!("   ✓ Strong quantum reasoning signature detected");
503        } else if reasoning_analysis.quantum_enhancement > 0.2 {
504            println!("   ~ Moderate quantum reasoning influence");
505        } else {
506            println!("   - Limited quantum reasoning detected");
507        }
508    }
509
510    Ok(())
511}
512
513/// Demonstrate multi-modal quantum language processing
514fn multimodal_demo() -> Result<()> {
515    println!("   Testing multi-modal quantum language processing...");
516
517    let config = QuantumLLMConfig::medium(25000);
518    let mut model = QuantumLLM::new(config)?;
519
520    // Simulate different modalities
521    let multimodal_tasks = vec![
522        (
523            "Text + Quantum Data",
524            "Analyze this quantum measurement sequence",
525        ),
526        (
527            "Text + Mathematical",
528            "Solve this quantum mechanics equation",
529        ),
530        ("Text + Logical", "Apply quantum logic to this proposition"),
531        (
532            "Text + Memory",
533            "Recall information about quantum algorithms",
534        ),
535    ];
536
537    for (modality, task_description) in multimodal_tasks {
538        println!("\n   --- {modality} Processing ---");
539        println!("   Task: \"{task_description}\"");
540
541        // Create synthetic multi-modal input
542        let text_input =
543            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
544
545        // Enable all quantum capabilities for multi-modal processing
546        let output = model.forward(&text_input, None, true, true)?;
547
548        println!("   Multi-modal output shape: {:?}", output.dim());
549
550        // Analyze multi-modal integration
551        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
552        println!("   Integration metrics:");
553        println!(
554            "   - Cross-modal coherence: {:.3}",
555            integration_quality.coherence
556        );
557        println!(
558            "   - Information fusion: {:.3}",
559            integration_quality.fusion_quality
560        );
561        println!(
562            "   - Quantum entanglement: {:.3}",
563            integration_quality.quantum_entanglement
564        );
565
566        // Test specific capabilities based on modality
567        match modality {
568            "Text + Quantum Data" => {
569                let quantum_analysis = analyze_quantum_data_processing(&output)?;
570                println!(
571                    "   - Quantum state recognition: {:.3}",
572                    quantum_analysis.state_recognition
573                );
574                println!(
575                    "   - Measurement prediction: {:.3}",
576                    quantum_analysis.measurement_prediction
577                );
578            }
579            "Text + Mathematical" => {
580                let math_analysis = analyze_mathematical_reasoning(&output)?;
581                println!(
582                    "   - Equation understanding: {:.3}",
583                    math_analysis.equation_understanding
584                );
585                println!(
586                    "   - Symbol manipulation: {:.3}",
587                    math_analysis.symbol_manipulation
588                );
589            }
590            "Text + Logical" => {
591                let logic_analysis = analyze_logical_processing(&output)?;
592                println!("   - Logical validity: {:.3}", logic_analysis.validity);
593                println!(
594                    "   - Inference quality: {:.3}",
595                    logic_analysis.inference_quality
596                );
597            }
598            "Text + Memory" => {
599                let memory_analysis = analyze_memory_retrieval(&output)?;
600                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
601                println!(
602                    "   - Retrieval efficiency: {:.3}",
603                    memory_analysis.efficiency
604                );
605            }
606            _ => {}
607        }
608    }
609
610    Ok(())
611}
612
613/// Demonstrate performance analysis and quantum advantage
614fn performance_analysis_demo() -> Result<()> {
615    println!("   Analyzing performance and quantum advantage...");
616
617    // Create models of different scales
618    let small_config = QuantumLLMConfig::small(10000);
619    let medium_config = QuantumLLMConfig::medium(20000);
620    let large_config = QuantumLLMConfig::large(50000);
621
622    let small_model = QuantumLLM::new(small_config)?;
623    let medium_model = QuantumLLM::new(medium_config)?;
624    let large_model = QuantumLLM::new(large_config)?;
625
626    let models = vec![
627        ("Small", &small_model),
628        ("Medium", &medium_model),
629        ("Large", &large_model),
630    ];
631
632    println!("\n   Model Comparison:");
633
634    for (name, model) in &models {
635        let config = model.config();
636        let params = model.num_parameters();
637
638        println!("   {name} Model:");
639        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
640        println!(
641            "   - Model dimension: {}",
642            config.transformer_config.model_dim
643        );
644        println!(
645            "   - Quantum qubits: {}",
646            config.transformer_config.num_qubits
647        );
648        println!("   - Memory size: {}", config.memory_config.memory_size);
649        println!(
650            "   - Reasoning steps: {}",
651            config.reasoning_config.reasoning_steps
652        );
653
654        // Estimate quantum advantage
655        let quantum_advantage = estimate_quantum_advantage(model)?;
656        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
657        println!(
658            "   - Memory efficiency: {:.2}x",
659            quantum_advantage.memory_efficiency
660        );
661        println!(
662            "   - Reasoning enhancement: {:.2}x",
663            quantum_advantage.reasoning_enhancement
664        );
665    }
666
667    // Performance benchmarks
668    println!("\n   Performance Benchmarks:");
669
670    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
671        ("Text Generation", measure_generation_performance),
672        ("Language Understanding", measure_understanding_performance),
673        ("Reasoning Tasks", measure_reasoning_performance),
674        ("Memory Operations", measure_memory_performance),
675    ];
676
677    for (task_name, benchmark_fn) in benchmark_tasks {
678        println!("\n   {task_name} Benchmark:");
679
680        for (model_name, model) in &models {
681            let performance = benchmark_fn(model)?;
682            println!(
683                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
684                model_name, performance.operations_per_sec, performance.memory_usage_mb
685            );
686        }
687    }
688
689    // Quantum scaling analysis
690    println!("\n   Quantum Scaling Analysis:");
691    let scaling_analysis = analyze_quantum_scaling(&models)?;
692    println!(
693        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
694        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
695    );
696    println!(
697        "   - Performance scaling: {:.2}",
698        scaling_analysis.performance_scaling
699    );
700    println!(
701        "   - Quantum efficiency: {:.1}%",
702        scaling_analysis.efficiency * 100.0
703    );
704
705    // Future projections
706    println!("\n   Future Projections:");
707    println!(
708        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
709        project_future_efficiency(100_000_000_000)
710    );
711    println!(
712        "   - Quantum coherence preservation: {:.1}%",
713        project_coherence_preservation() * 100.0
714    );
715    println!(
716        "   - Reasoning capability enhancement: {:.2}x",
717        project_reasoning_enhancement()
718    );
719
720    Ok(())
721}
Source

pub fn large(vocab_size: usize) -> Self

Create large model configuration

Examples found in repository?
examples/quantum_llm.rs (line 124)
64fn model_configurations_demo() -> Result<()> {
65    println!("   Creating quantum LLM configurations...");
66
67    let vocab_size = 50000;
68
69    // Small model for edge deployment
70    let small_config = QuantumLLMConfig::small(vocab_size);
71    println!("   Small Model Configuration:");
72    println!("   - Vocabulary size: {}", small_config.vocab_size);
73    println!(
74        "   - Model dimension: {}",
75        small_config.transformer_config.model_dim
76    );
77    println!(
78        "   - Number of heads: {}",
79        small_config.transformer_config.num_heads
80    );
81    println!(
82        "   - Number of layers: {}",
83        small_config.transformer_config.num_layers
84    );
85    println!(
86        "   - Quantum qubits: {}",
87        small_config.transformer_config.num_qubits
88    );
89    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
90
91    let small_model = QuantumLLM::new(small_config)?;
92    println!(
93        "   Small model parameters: {:.1}M",
94        small_model.num_parameters() as f64 / 1_000_000.0
95    );
96
97    // Medium model for general use
98    let medium_config = QuantumLLMConfig::medium(vocab_size);
99    println!("\n   Medium Model Configuration:");
100    println!(
101        "   - Model dimension: {}",
102        medium_config.transformer_config.model_dim
103    );
104    println!(
105        "   - Number of layers: {}",
106        medium_config.transformer_config.num_layers
107    );
108    println!(
109        "   - Quantum qubits: {}",
110        medium_config.transformer_config.num_qubits
111    );
112    println!(
113        "   - Max context length: {}",
114        medium_config.max_context_length
115    );
116
117    let medium_model = QuantumLLM::new(medium_config)?;
118    println!(
119        "   Medium model parameters: {:.1}M",
120        medium_model.num_parameters() as f64 / 1_000_000.0
121    );
122
123    // Large model for research and advanced applications
124    let large_config = QuantumLLMConfig::large(vocab_size);
125    println!("\n   Large Model Configuration:");
126    println!(
127        "   - Model dimension: {}",
128        large_config.transformer_config.model_dim
129    );
130    println!(
131        "   - Number of layers: {}",
132        large_config.transformer_config.num_layers
133    );
134    println!(
135        "   - Quantum qubits: {}",
136        large_config.transformer_config.num_qubits
137    );
138    println!(
139        "   - Max context length: {}",
140        large_config.max_context_length
141    );
142    println!(
143        "   - Reasoning steps: {}",
144        large_config.reasoning_config.reasoning_steps
145    );
146
147    let large_model = QuantumLLM::new(large_config)?;
148    println!(
149        "   Large model parameters: {:.1}B",
150        large_model.num_parameters() as f64 / 1_000_000_000.0
151    );
152
153    // Compare quantum vs classical parameter efficiency
154    println!("\n   Quantum Efficiency Analysis:");
155    let quantum_efficiency =
156        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
157    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
158
159    Ok(())
160}
161
162/// Demonstrate quantum memory systems
163fn quantum_memory_demo() -> Result<()> {
164    println!("   Testing quantum memory systems...");
165
166    // Test different memory configurations
167    let memory_configs = vec![
168        ("Basic Associative", QuantumMemoryConfig::default()),
169        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
170        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
171    ];
172
173    for (name, config) in memory_configs {
174        println!("\n   --- {name} Memory ---");
175
176        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
177        println!("   Memory configuration:");
178        println!("   - Memory size: {}", config.memory_size);
179        println!("   - Associative memory: {}", config.associative_memory);
180        println!("   - Episodic memory: {}", config.episodic_memory);
181        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
182        println!("   - Quantum compression: {}", config.quantum_compression);
183
184        // Test memory storage and retrieval
185        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
186            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
187        });
188
189        // Enhance embeddings with memory
190        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
191        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
192
193        // Measure memory enhancement effect
194        let original_variance = test_embeddings.var(0.0);
195        let enhanced_variance = enhanced.var(0.0);
196        let enhancement_factor = enhanced_variance / original_variance;
197
198        println!("   Memory enhancement factor: {enhancement_factor:.3}");
199
200        // Test memory update
201        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
202        memory_system.update_memory(&enhanced, &input_ids)?;
203
204        println!("   Memory updated with new experiences");
205
206        // Test memory retrieval patterns
207        test_memory_patterns(&memory_system, &config)?;
208    }
209
210    Ok(())
211}
212
213/// Demonstrate quantum reasoning capabilities
214fn quantum_reasoning_demo() -> Result<()> {
215    println!("   Testing quantum reasoning modules...");
216
217    let reasoning_configs = vec![
218        ("Basic Logical", QuantumReasoningConfig::default()),
219        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
220        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
221    ];
222
223    for (name, config) in reasoning_configs {
224        println!("\n   --- {name} Reasoning ---");
225
226        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
227
228        println!("   Reasoning capabilities:");
229        println!("   - Logical reasoning: {}", config.logical_reasoning);
230        println!("   - Causal reasoning: {}", config.causal_reasoning);
231        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
232        println!("   - Reasoning steps: {}", config.reasoning_steps);
233        println!("   - Circuit depth: {}", config.circuit_depth);
234        println!(
235            "   - Entanglement strength: {:.2}",
236            config.entanglement_strength
237        );
238
239        // Test reasoning on sample hidden states
240        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
241            // Create patterns that require reasoning
242            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
243            let causal_pattern = s as f64 * 0.1;
244            let base_value = logical_pattern + causal_pattern;
245
246            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
247        });
248
249        println!("   Input hidden states shape: {:?}", hidden_states.dim());
250
251        // Apply quantum reasoning
252        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
253        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
254
255        // Analyze reasoning effects
256        let reasoning_enhancement =
257            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
258        println!("   Reasoning enhancement metrics:");
259        println!(
260            "   - Pattern amplification: {:.3}",
261            reasoning_enhancement.pattern_amplification
262        );
263        println!(
264            "   - Logical consistency: {:.3}",
265            reasoning_enhancement.logical_consistency
266        );
267        println!(
268            "   - Causal coherence: {:.3}",
269            reasoning_enhancement.causal_coherence
270        );
271
272        // Test quantum coherence during reasoning
273        let coherence = reasoning_module.measure_coherence()?;
274        println!("   Quantum coherence: {coherence:.3}");
275
276        // Test token selection enhancement
277        let sample_logits = Array1::from_shape_fn(1000, |i| {
278            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
279        });
280
281        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
282        let enhancement_effect = (&enhanced_logits - &sample_logits)
283            .mapv(f64::abs)
284            .mean()
285            .unwrap_or(0.0);
286        println!("   Token selection enhancement: {enhancement_effect:.4}");
287    }
288
289    Ok(())
290}
291
292/// Demonstrate quantum-enhanced text generation
293fn text_generation_demo() -> Result<()> {
294    println!("   Testing quantum-enhanced text generation...");
295
296    let config = QuantumLLMConfig::small(10000);
297    let mut model = QuantumLLM::new(config)?;
298
299    // Test different generation configurations
300    let generation_configs = vec![
301        ("Default", GenerationConfig::default()),
302        ("Creative", GenerationConfig::creative()),
303        ("Precise", GenerationConfig::precise()),
304    ];
305
306    let test_prompts = [
307        "The quantum computer",
308        "Artificial intelligence will",
309        "In the future, quantum computing",
310        "The relationship between quantum mechanics and consciousness",
311    ];
312
313    for (config_name, gen_config) in generation_configs {
314        println!("\n   --- {config_name} Generation ---");
315        println!("   Configuration:");
316        println!("   - Max length: {}", gen_config.max_length);
317        println!("   - Temperature: {:.1}", gen_config.temperature);
318        println!("   - Top-k: {:?}", gen_config.top_k);
319        println!("   - Top-p: {:?}", gen_config.top_p);
320        println!(
321            "   - Quantum reasoning: {}",
322            gen_config.use_quantum_reasoning
323        );
324        println!("   - Memory usage: {}", gen_config.use_memory);
325        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
326
327        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
328            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
329
330            let start_time = std::time::Instant::now();
331            let generated = model.generate(prompt, gen_config.clone())?;
332            let generation_time = start_time.elapsed();
333
334            // Display partial generated text (first 100 chars)
335            let display_text = if generated.len() > 100 {
336                format!("{}...", &generated[..100])
337            } else {
338                generated.clone()
339            };
340
341            println!("   Generated: \"{display_text}\"");
342            println!("   Generation time: {generation_time:.2?}");
343
344            // Analyze generation quality
345            let quality = analyze_generation_quality(&generated, &gen_config)?;
346            println!("   Quality metrics:");
347            println!("   - Fluency: {:.2}", quality.fluency);
348            println!("   - Coherence: {:.2}", quality.coherence);
349            println!("   - Novelty: {:.2}", quality.novelty);
350            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
351        }
352    }
353
354    // Display generation statistics
355    let stats = model.generation_stats();
356    println!("\n   Generation Statistics:");
357    println!("   - Total tokens generated: {}", stats.total_tokens);
358    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
359    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
360    println!("   - Memory retrievals: {}", stats.memory_retrievals);
361
362    Ok(())
363}
364
365/// Demonstrate language understanding capabilities
366fn language_understanding_demo() -> Result<()> {
367    println!("   Testing quantum language understanding...");
368
369    let config = QuantumLLMConfig::medium(20000);
370    let mut model = QuantumLLM::new(config)?;
371
372    // Test different understanding tasks
373    let understanding_tasks = vec![
374        ("Reading Comprehension", vec![
375            "The photon exhibits wave-particle duality in quantum mechanics.",
376            "What properties does a photon exhibit according to quantum mechanics?",
377        ]),
378        ("Logical Reasoning", vec![
379            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
380            "Apply logical reasoning to derive the conclusion.",
381        ]),
382        ("Causal Understanding", vec![
383            "When a quantum measurement is performed, the wavefunction collapses.",
384            "What causes the wavefunction to collapse?",
385        ]),
386        ("Analogical Reasoning", vec![
387            "Quantum superposition is like a coin spinning in the air before landing.",
388            "How is quantum entanglement similar to this analogy?",
389        ]),
390    ];
391
392    for (task_name, texts) in understanding_tasks {
393        println!("\n   --- {task_name} Task ---");
394
395        for (i, text) in texts.iter().enumerate() {
396            println!("   Input {}: \"{}\"", i + 1, text);
397
398            // Process text through model
399            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
400
401            // Enable different reasoning modes based on task
402            let use_reasoning = match task_name {
403                "Logical Reasoning" => true,
404                "Causal Understanding" => true,
405                "Analogical Reasoning" => true,
406                _ => false,
407            };
408
409            let use_memory = true;
410
411            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
412            println!("   Model output shape: {:?}", output.dim());
413
414            // Analyze understanding quality
415            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
416            println!("   Understanding score: {understanding_score:.3}");
417        }
418
419        // Task-specific analysis
420        match task_name {
421            "Reading Comprehension" => {
422                println!("   ✓ Model shows information extraction capabilities");
423            }
424            "Logical Reasoning" => {
425                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
426            }
427            "Causal Understanding" => {
428                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
429            }
430            "Analogical Reasoning" => {
431                println!("   ✓ Quantum analogy engine maps structural similarities");
432            }
433            _ => {}
434        }
435    }
436
437    Ok(())
438}
439
440/// Demonstrate chain-of-thought reasoning
441fn chain_of_thought_demo() -> Result<()> {
442    println!("   Testing quantum chain-of-thought reasoning...");
443
444    let config = QuantumLLMConfig::large(30000);
445    let mut model = QuantumLLM::new(config)?;
446
447    let reasoning_problems = vec![
448        ("Mathematical Problem",
449         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
450        ("Physics Problem",
451         "Explain how quantum entanglement enables quantum teleportation step by step."),
452        ("Logic Problem",
453         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
454        ("Ethics Problem",
455         "What are the implications of quantum computing for cryptography and privacy?"),
456    ];
457
458    for (problem_type, prompt) in reasoning_problems {
459        println!("\n   --- {problem_type} ---");
460        println!("   Problem: \"{prompt}\"");
461
462        // Enable chain-of-thought generation
463        let cot_config = GenerationConfig {
464            max_length: 200,
465            temperature: 0.8,
466            top_k: Some(40),
467            top_p: Some(0.9),
468            repetition_penalty: 1.1,
469            use_quantum_reasoning: true,
470            use_memory: true,
471            chain_of_thought: true,
472        };
473
474        let start_time = std::time::Instant::now();
475        let reasoning_output = model.generate(prompt, cot_config)?;
476        let reasoning_time = start_time.elapsed();
477
478        // Display reasoning steps (truncated for readability)
479        let display_output = if reasoning_output.len() > 200 {
480            format!("{}...", &reasoning_output[..200])
481        } else {
482            reasoning_output.clone()
483        };
484
485        println!("   Chain-of-thought reasoning:");
486        println!("   \"{display_output}\"");
487        println!("   Reasoning time: {reasoning_time:.2?}");
488
489        // Analyze reasoning quality
490        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
491        println!("   Reasoning analysis:");
492        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
493        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
494        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
495        println!(
496            "   - Quantum enhancement: {:.3}",
497            reasoning_analysis.quantum_enhancement
498        );
499
500        // Check for quantum reasoning patterns
501        if reasoning_analysis.quantum_enhancement > 0.5 {
502            println!("   ✓ Strong quantum reasoning signature detected");
503        } else if reasoning_analysis.quantum_enhancement > 0.2 {
504            println!("   ~ Moderate quantum reasoning influence");
505        } else {
506            println!("   - Limited quantum reasoning detected");
507        }
508    }
509
510    Ok(())
511}
512
513/// Demonstrate multi-modal quantum language processing
514fn multimodal_demo() -> Result<()> {
515    println!("   Testing multi-modal quantum language processing...");
516
517    let config = QuantumLLMConfig::medium(25000);
518    let mut model = QuantumLLM::new(config)?;
519
520    // Simulate different modalities
521    let multimodal_tasks = vec![
522        (
523            "Text + Quantum Data",
524            "Analyze this quantum measurement sequence",
525        ),
526        (
527            "Text + Mathematical",
528            "Solve this quantum mechanics equation",
529        ),
530        ("Text + Logical", "Apply quantum logic to this proposition"),
531        (
532            "Text + Memory",
533            "Recall information about quantum algorithms",
534        ),
535    ];
536
537    for (modality, task_description) in multimodal_tasks {
538        println!("\n   --- {modality} Processing ---");
539        println!("   Task: \"{task_description}\"");
540
541        // Create synthetic multi-modal input
542        let text_input =
543            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
544
545        // Enable all quantum capabilities for multi-modal processing
546        let output = model.forward(&text_input, None, true, true)?;
547
548        println!("   Multi-modal output shape: {:?}", output.dim());
549
550        // Analyze multi-modal integration
551        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
552        println!("   Integration metrics:");
553        println!(
554            "   - Cross-modal coherence: {:.3}",
555            integration_quality.coherence
556        );
557        println!(
558            "   - Information fusion: {:.3}",
559            integration_quality.fusion_quality
560        );
561        println!(
562            "   - Quantum entanglement: {:.3}",
563            integration_quality.quantum_entanglement
564        );
565
566        // Test specific capabilities based on modality
567        match modality {
568            "Text + Quantum Data" => {
569                let quantum_analysis = analyze_quantum_data_processing(&output)?;
570                println!(
571                    "   - Quantum state recognition: {:.3}",
572                    quantum_analysis.state_recognition
573                );
574                println!(
575                    "   - Measurement prediction: {:.3}",
576                    quantum_analysis.measurement_prediction
577                );
578            }
579            "Text + Mathematical" => {
580                let math_analysis = analyze_mathematical_reasoning(&output)?;
581                println!(
582                    "   - Equation understanding: {:.3}",
583                    math_analysis.equation_understanding
584                );
585                println!(
586                    "   - Symbol manipulation: {:.3}",
587                    math_analysis.symbol_manipulation
588                );
589            }
590            "Text + Logical" => {
591                let logic_analysis = analyze_logical_processing(&output)?;
592                println!("   - Logical validity: {:.3}", logic_analysis.validity);
593                println!(
594                    "   - Inference quality: {:.3}",
595                    logic_analysis.inference_quality
596                );
597            }
598            "Text + Memory" => {
599                let memory_analysis = analyze_memory_retrieval(&output)?;
600                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
601                println!(
602                    "   - Retrieval efficiency: {:.3}",
603                    memory_analysis.efficiency
604                );
605            }
606            _ => {}
607        }
608    }
609
610    Ok(())
611}
612
613/// Demonstrate performance analysis and quantum advantage
614fn performance_analysis_demo() -> Result<()> {
615    println!("   Analyzing performance and quantum advantage...");
616
617    // Create models of different scales
618    let small_config = QuantumLLMConfig::small(10000);
619    let medium_config = QuantumLLMConfig::medium(20000);
620    let large_config = QuantumLLMConfig::large(50000);
621
622    let small_model = QuantumLLM::new(small_config)?;
623    let medium_model = QuantumLLM::new(medium_config)?;
624    let large_model = QuantumLLM::new(large_config)?;
625
626    let models = vec![
627        ("Small", &small_model),
628        ("Medium", &medium_model),
629        ("Large", &large_model),
630    ];
631
632    println!("\n   Model Comparison:");
633
634    for (name, model) in &models {
635        let config = model.config();
636        let params = model.num_parameters();
637
638        println!("   {name} Model:");
639        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
640        println!(
641            "   - Model dimension: {}",
642            config.transformer_config.model_dim
643        );
644        println!(
645            "   - Quantum qubits: {}",
646            config.transformer_config.num_qubits
647        );
648        println!("   - Memory size: {}", config.memory_config.memory_size);
649        println!(
650            "   - Reasoning steps: {}",
651            config.reasoning_config.reasoning_steps
652        );
653
654        // Estimate quantum advantage
655        let quantum_advantage = estimate_quantum_advantage(model)?;
656        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
657        println!(
658            "   - Memory efficiency: {:.2}x",
659            quantum_advantage.memory_efficiency
660        );
661        println!(
662            "   - Reasoning enhancement: {:.2}x",
663            quantum_advantage.reasoning_enhancement
664        );
665    }
666
667    // Performance benchmarks
668    println!("\n   Performance Benchmarks:");
669
670    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
671        ("Text Generation", measure_generation_performance),
672        ("Language Understanding", measure_understanding_performance),
673        ("Reasoning Tasks", measure_reasoning_performance),
674        ("Memory Operations", measure_memory_performance),
675    ];
676
677    for (task_name, benchmark_fn) in benchmark_tasks {
678        println!("\n   {task_name} Benchmark:");
679
680        for (model_name, model) in &models {
681            let performance = benchmark_fn(model)?;
682            println!(
683                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
684                model_name, performance.operations_per_sec, performance.memory_usage_mb
685            );
686        }
687    }
688
689    // Quantum scaling analysis
690    println!("\n   Quantum Scaling Analysis:");
691    let scaling_analysis = analyze_quantum_scaling(&models)?;
692    println!(
693        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
694        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
695    );
696    println!(
697        "   - Performance scaling: {:.2}",
698        scaling_analysis.performance_scaling
699    );
700    println!(
701        "   - Quantum efficiency: {:.1}%",
702        scaling_analysis.efficiency * 100.0
703    );
704
705    // Future projections
706    println!("\n   Future Projections:");
707    println!(
708        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
709        project_future_efficiency(100_000_000_000)
710    );
711    println!(
712        "   - Quantum coherence preservation: {:.1}%",
713        project_coherence_preservation() * 100.0
714    );
715    println!(
716        "   - Reasoning capability enhancement: {:.2}x",
717        project_reasoning_enhancement()
718    );
719
720    Ok(())
721}

Trait Implementations§

Source§

impl Clone for QuantumLLMConfig

Source§

fn clone(&self) -> QuantumLLMConfig

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumLLMConfig

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V