quantum_llm/
quantum_llm.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments,
8    clippy::match_like_matches_macro,
9    clippy::type_complexity
10)]
11#![allow(unused_must_use)]
12//! Quantum Large Language Model Example
13//!
14//! This example demonstrates quantum-enhanced large language models with advanced
15//! features like quantum memory, quantum reasoning, and quantum-classical hybrid
16//! processing for improved language understanding and generation.
17
18use quantrs2_ml::prelude::*;
19use quantrs2_ml::qnn::QNNLayerType;
20use scirs2_core::ndarray::{Array1, Array2, Array3};
21use scirs2_core::random::prelude::*;
22
23fn main() -> Result<()> {
24    println!("=== Quantum Large Language Model Demo ===\n");
25
26    // Step 1: Model configurations and architectures
27    println!("1. Quantum LLM Configurations...");
28    model_configurations_demo()?;
29
30    // Step 2: Quantum memory system
31    println!("\n2. Quantum Memory Systems...");
32    quantum_memory_demo()?;
33
34    // Step 3: Quantum reasoning capabilities
35    println!("\n3. Quantum Reasoning Modules...");
36    quantum_reasoning_demo()?;
37
38    // Step 4: Text generation with quantum enhancement
39    println!("\n4. Quantum-Enhanced Text Generation...");
40    text_generation_demo()?;
41
42    // Step 5: Language understanding tasks
43    println!("\n5. Quantum Language Understanding...");
44    language_understanding_demo()?;
45
46    // Step 6: Chain-of-thought reasoning
47    println!("\n6. Quantum Chain-of-Thought Reasoning...");
48    chain_of_thought_demo()?;
49
50    // Step 7: Multi-modal quantum processing
51    println!("\n7. Multi-Modal Quantum Language Processing...");
52    multimodal_demo()?;
53
54    // Step 8: Performance analysis and quantum advantage
55    println!("\n8. Performance Analysis and Quantum Advantage...");
56    performance_analysis_demo()?;
57
58    println!("\n=== Quantum Large Language Model Demo Complete ===");
59
60    Ok(())
61}
62
63/// Demonstrate different model configurations
64fn model_configurations_demo() -> Result<()> {
65    println!("   Creating quantum LLM configurations...");
66
67    let vocab_size = 50000;
68
69    // Small model for edge deployment
70    let small_config = QuantumLLMConfig::small(vocab_size);
71    println!("   Small Model Configuration:");
72    println!("   - Vocabulary size: {}", small_config.vocab_size);
73    println!(
74        "   - Model dimension: {}",
75        small_config.transformer_config.model_dim
76    );
77    println!(
78        "   - Number of heads: {}",
79        small_config.transformer_config.num_heads
80    );
81    println!(
82        "   - Number of layers: {}",
83        small_config.transformer_config.num_layers
84    );
85    println!(
86        "   - Quantum qubits: {}",
87        small_config.transformer_config.num_qubits
88    );
89    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
90
91    let small_model = QuantumLLM::new(small_config)?;
92    println!(
93        "   Small model parameters: {:.1}M",
94        small_model.num_parameters() as f64 / 1_000_000.0
95    );
96
97    // Medium model for general use
98    let medium_config = QuantumLLMConfig::medium(vocab_size);
99    println!("\n   Medium Model Configuration:");
100    println!(
101        "   - Model dimension: {}",
102        medium_config.transformer_config.model_dim
103    );
104    println!(
105        "   - Number of layers: {}",
106        medium_config.transformer_config.num_layers
107    );
108    println!(
109        "   - Quantum qubits: {}",
110        medium_config.transformer_config.num_qubits
111    );
112    println!(
113        "   - Max context length: {}",
114        medium_config.max_context_length
115    );
116
117    let medium_model = QuantumLLM::new(medium_config)?;
118    println!(
119        "   Medium model parameters: {:.1}M",
120        medium_model.num_parameters() as f64 / 1_000_000.0
121    );
122
123    // Large model for research and advanced applications
124    let large_config = QuantumLLMConfig::large(vocab_size);
125    println!("\n   Large Model Configuration:");
126    println!(
127        "   - Model dimension: {}",
128        large_config.transformer_config.model_dim
129    );
130    println!(
131        "   - Number of layers: {}",
132        large_config.transformer_config.num_layers
133    );
134    println!(
135        "   - Quantum qubits: {}",
136        large_config.transformer_config.num_qubits
137    );
138    println!(
139        "   - Max context length: {}",
140        large_config.max_context_length
141    );
142    println!(
143        "   - Reasoning steps: {}",
144        large_config.reasoning_config.reasoning_steps
145    );
146
147    let large_model = QuantumLLM::new(large_config)?;
148    println!(
149        "   Large model parameters: {:.1}B",
150        large_model.num_parameters() as f64 / 1_000_000_000.0
151    );
152
153    // Compare quantum vs classical parameter efficiency
154    println!("\n   Quantum Efficiency Analysis:");
155    let quantum_efficiency =
156        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
157    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
158
159    Ok(())
160}
161
162/// Demonstrate quantum memory systems
163fn quantum_memory_demo() -> Result<()> {
164    println!("   Testing quantum memory systems...");
165
166    // Test different memory configurations
167    let memory_configs = vec![
168        ("Basic Associative", QuantumMemoryConfig::default()),
169        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
170        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
171    ];
172
173    for (name, config) in memory_configs {
174        println!("\n   --- {name} Memory ---");
175
176        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
177        println!("   Memory configuration:");
178        println!("   - Memory size: {}", config.memory_size);
179        println!("   - Associative memory: {}", config.associative_memory);
180        println!("   - Episodic memory: {}", config.episodic_memory);
181        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
182        println!("   - Quantum compression: {}", config.quantum_compression);
183
184        // Test memory storage and retrieval
185        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
186            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
187        });
188
189        // Enhance embeddings with memory
190        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
191        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
192
193        // Measure memory enhancement effect
194        let original_variance = test_embeddings.var(0.0);
195        let enhanced_variance = enhanced.var(0.0);
196        let enhancement_factor = enhanced_variance / original_variance;
197
198        println!("   Memory enhancement factor: {enhancement_factor:.3}");
199
200        // Test memory update
201        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
202        memory_system.update_memory(&enhanced, &input_ids)?;
203
204        println!("   Memory updated with new experiences");
205
206        // Test memory retrieval patterns
207        test_memory_patterns(&memory_system, &config)?;
208    }
209
210    Ok(())
211}
212
213/// Demonstrate quantum reasoning capabilities
214fn quantum_reasoning_demo() -> Result<()> {
215    println!("   Testing quantum reasoning modules...");
216
217    let reasoning_configs = vec![
218        ("Basic Logical", QuantumReasoningConfig::default()),
219        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
220        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
221    ];
222
223    for (name, config) in reasoning_configs {
224        println!("\n   --- {name} Reasoning ---");
225
226        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
227
228        println!("   Reasoning capabilities:");
229        println!("   - Logical reasoning: {}", config.logical_reasoning);
230        println!("   - Causal reasoning: {}", config.causal_reasoning);
231        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
232        println!("   - Reasoning steps: {}", config.reasoning_steps);
233        println!("   - Circuit depth: {}", config.circuit_depth);
234        println!(
235            "   - Entanglement strength: {:.2}",
236            config.entanglement_strength
237        );
238
239        // Test reasoning on sample hidden states
240        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
241            // Create patterns that require reasoning
242            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
243            let causal_pattern = s as f64 * 0.1;
244            let base_value = logical_pattern + causal_pattern;
245
246            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
247        });
248
249        println!("   Input hidden states shape: {:?}", hidden_states.dim());
250
251        // Apply quantum reasoning
252        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
253        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
254
255        // Analyze reasoning effects
256        let reasoning_enhancement =
257            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
258        println!("   Reasoning enhancement metrics:");
259        println!(
260            "   - Pattern amplification: {:.3}",
261            reasoning_enhancement.pattern_amplification
262        );
263        println!(
264            "   - Logical consistency: {:.3}",
265            reasoning_enhancement.logical_consistency
266        );
267        println!(
268            "   - Causal coherence: {:.3}",
269            reasoning_enhancement.causal_coherence
270        );
271
272        // Test quantum coherence during reasoning
273        let coherence = reasoning_module.measure_coherence()?;
274        println!("   Quantum coherence: {coherence:.3}");
275
276        // Test token selection enhancement
277        let sample_logits = Array1::from_shape_fn(1000, |i| {
278            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
279        });
280
281        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
282        let enhancement_effect = (&enhanced_logits - &sample_logits)
283            .mapv(f64::abs)
284            .mean()
285            .unwrap_or(0.0);
286        println!("   Token selection enhancement: {enhancement_effect:.4}");
287    }
288
289    Ok(())
290}
291
292/// Demonstrate quantum-enhanced text generation
293fn text_generation_demo() -> Result<()> {
294    println!("   Testing quantum-enhanced text generation...");
295
296    let config = QuantumLLMConfig::small(10000);
297    let mut model = QuantumLLM::new(config)?;
298
299    // Test different generation configurations
300    let generation_configs = vec![
301        ("Default", GenerationConfig::default()),
302        ("Creative", GenerationConfig::creative()),
303        ("Precise", GenerationConfig::precise()),
304    ];
305
306    let test_prompts = [
307        "The quantum computer",
308        "Artificial intelligence will",
309        "In the future, quantum computing",
310        "The relationship between quantum mechanics and consciousness",
311    ];
312
313    for (config_name, gen_config) in generation_configs {
314        println!("\n   --- {config_name} Generation ---");
315        println!("   Configuration:");
316        println!("   - Max length: {}", gen_config.max_length);
317        println!("   - Temperature: {:.1}", gen_config.temperature);
318        println!("   - Top-k: {:?}", gen_config.top_k);
319        println!("   - Top-p: {:?}", gen_config.top_p);
320        println!(
321            "   - Quantum reasoning: {}",
322            gen_config.use_quantum_reasoning
323        );
324        println!("   - Memory usage: {}", gen_config.use_memory);
325        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
326
327        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
328            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
329
330            let start_time = std::time::Instant::now();
331            let generated = model.generate(prompt, gen_config.clone())?;
332            let generation_time = start_time.elapsed();
333
334            // Display partial generated text (first 100 chars)
335            let display_text = if generated.len() > 100 {
336                format!("{}...", &generated[..100])
337            } else {
338                generated.clone()
339            };
340
341            println!("   Generated: \"{display_text}\"");
342            println!("   Generation time: {generation_time:.2?}");
343
344            // Analyze generation quality
345            let quality = analyze_generation_quality(&generated, &gen_config)?;
346            println!("   Quality metrics:");
347            println!("   - Fluency: {:.2}", quality.fluency);
348            println!("   - Coherence: {:.2}", quality.coherence);
349            println!("   - Novelty: {:.2}", quality.novelty);
350            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
351        }
352    }
353
354    // Display generation statistics
355    let stats = model.generation_stats();
356    println!("\n   Generation Statistics:");
357    println!("   - Total tokens generated: {}", stats.total_tokens);
358    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
359    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
360    println!("   - Memory retrievals: {}", stats.memory_retrievals);
361
362    Ok(())
363}
364
365/// Demonstrate language understanding capabilities
366fn language_understanding_demo() -> Result<()> {
367    println!("   Testing quantum language understanding...");
368
369    let config = QuantumLLMConfig::medium(20000);
370    let mut model = QuantumLLM::new(config)?;
371
372    // Test different understanding tasks
373    let understanding_tasks = vec![
374        ("Reading Comprehension", vec![
375            "The photon exhibits wave-particle duality in quantum mechanics.",
376            "What properties does a photon exhibit according to quantum mechanics?",
377        ]),
378        ("Logical Reasoning", vec![
379            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
380            "Apply logical reasoning to derive the conclusion.",
381        ]),
382        ("Causal Understanding", vec![
383            "When a quantum measurement is performed, the wavefunction collapses.",
384            "What causes the wavefunction to collapse?",
385        ]),
386        ("Analogical Reasoning", vec![
387            "Quantum superposition is like a coin spinning in the air before landing.",
388            "How is quantum entanglement similar to this analogy?",
389        ]),
390    ];
391
392    for (task_name, texts) in understanding_tasks {
393        println!("\n   --- {task_name} Task ---");
394
395        for (i, text) in texts.iter().enumerate() {
396            println!("   Input {}: \"{}\"", i + 1, text);
397
398            // Process text through model
399            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
400
401            // Enable different reasoning modes based on task
402            let use_reasoning = match task_name {
403                "Logical Reasoning" => true,
404                "Causal Understanding" => true,
405                "Analogical Reasoning" => true,
406                _ => false,
407            };
408
409            let use_memory = true;
410
411            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
412            println!("   Model output shape: {:?}", output.dim());
413
414            // Analyze understanding quality
415            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
416            println!("   Understanding score: {understanding_score:.3}");
417        }
418
419        // Task-specific analysis
420        match task_name {
421            "Reading Comprehension" => {
422                println!("   ✓ Model shows information extraction capabilities");
423            }
424            "Logical Reasoning" => {
425                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
426            }
427            "Causal Understanding" => {
428                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
429            }
430            "Analogical Reasoning" => {
431                println!("   ✓ Quantum analogy engine maps structural similarities");
432            }
433            _ => {}
434        }
435    }
436
437    Ok(())
438}
439
440/// Demonstrate chain-of-thought reasoning
441fn chain_of_thought_demo() -> Result<()> {
442    println!("   Testing quantum chain-of-thought reasoning...");
443
444    let config = QuantumLLMConfig::large(30000);
445    let mut model = QuantumLLM::new(config)?;
446
447    let reasoning_problems = vec![
448        ("Mathematical Problem",
449         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
450        ("Physics Problem",
451         "Explain how quantum entanglement enables quantum teleportation step by step."),
452        ("Logic Problem",
453         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
454        ("Ethics Problem",
455         "What are the implications of quantum computing for cryptography and privacy?"),
456    ];
457
458    for (problem_type, prompt) in reasoning_problems {
459        println!("\n   --- {problem_type} ---");
460        println!("   Problem: \"{prompt}\"");
461
462        // Enable chain-of-thought generation
463        let cot_config = GenerationConfig {
464            max_length: 200,
465            temperature: 0.8,
466            top_k: Some(40),
467            top_p: Some(0.9),
468            repetition_penalty: 1.1,
469            use_quantum_reasoning: true,
470            use_memory: true,
471            chain_of_thought: true,
472        };
473
474        let start_time = std::time::Instant::now();
475        let reasoning_output = model.generate(prompt, cot_config)?;
476        let reasoning_time = start_time.elapsed();
477
478        // Display reasoning steps (truncated for readability)
479        let display_output = if reasoning_output.len() > 200 {
480            format!("{}...", &reasoning_output[..200])
481        } else {
482            reasoning_output.clone()
483        };
484
485        println!("   Chain-of-thought reasoning:");
486        println!("   \"{display_output}\"");
487        println!("   Reasoning time: {reasoning_time:.2?}");
488
489        // Analyze reasoning quality
490        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
491        println!("   Reasoning analysis:");
492        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
493        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
494        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
495        println!(
496            "   - Quantum enhancement: {:.3}",
497            reasoning_analysis.quantum_enhancement
498        );
499
500        // Check for quantum reasoning patterns
501        if reasoning_analysis.quantum_enhancement > 0.5 {
502            println!("   ✓ Strong quantum reasoning signature detected");
503        } else if reasoning_analysis.quantum_enhancement > 0.2 {
504            println!("   ~ Moderate quantum reasoning influence");
505        } else {
506            println!("   - Limited quantum reasoning detected");
507        }
508    }
509
510    Ok(())
511}
512
513/// Demonstrate multi-modal quantum language processing
514fn multimodal_demo() -> Result<()> {
515    println!("   Testing multi-modal quantum language processing...");
516
517    let config = QuantumLLMConfig::medium(25000);
518    let mut model = QuantumLLM::new(config)?;
519
520    // Simulate different modalities
521    let multimodal_tasks = vec![
522        (
523            "Text + Quantum Data",
524            "Analyze this quantum measurement sequence",
525        ),
526        (
527            "Text + Mathematical",
528            "Solve this quantum mechanics equation",
529        ),
530        ("Text + Logical", "Apply quantum logic to this proposition"),
531        (
532            "Text + Memory",
533            "Recall information about quantum algorithms",
534        ),
535    ];
536
537    for (modality, task_description) in multimodal_tasks {
538        println!("\n   --- {modality} Processing ---");
539        println!("   Task: \"{task_description}\"");
540
541        // Create synthetic multi-modal input
542        let text_input =
543            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
544
545        // Enable all quantum capabilities for multi-modal processing
546        let output = model.forward(&text_input, None, true, true)?;
547
548        println!("   Multi-modal output shape: {:?}", output.dim());
549
550        // Analyze multi-modal integration
551        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
552        println!("   Integration metrics:");
553        println!(
554            "   - Cross-modal coherence: {:.3}",
555            integration_quality.coherence
556        );
557        println!(
558            "   - Information fusion: {:.3}",
559            integration_quality.fusion_quality
560        );
561        println!(
562            "   - Quantum entanglement: {:.3}",
563            integration_quality.quantum_entanglement
564        );
565
566        // Test specific capabilities based on modality
567        match modality {
568            "Text + Quantum Data" => {
569                let quantum_analysis = analyze_quantum_data_processing(&output)?;
570                println!(
571                    "   - Quantum state recognition: {:.3}",
572                    quantum_analysis.state_recognition
573                );
574                println!(
575                    "   - Measurement prediction: {:.3}",
576                    quantum_analysis.measurement_prediction
577                );
578            }
579            "Text + Mathematical" => {
580                let math_analysis = analyze_mathematical_reasoning(&output)?;
581                println!(
582                    "   - Equation understanding: {:.3}",
583                    math_analysis.equation_understanding
584                );
585                println!(
586                    "   - Symbol manipulation: {:.3}",
587                    math_analysis.symbol_manipulation
588                );
589            }
590            "Text + Logical" => {
591                let logic_analysis = analyze_logical_processing(&output)?;
592                println!("   - Logical validity: {:.3}", logic_analysis.validity);
593                println!(
594                    "   - Inference quality: {:.3}",
595                    logic_analysis.inference_quality
596                );
597            }
598            "Text + Memory" => {
599                let memory_analysis = analyze_memory_retrieval(&output)?;
600                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
601                println!(
602                    "   - Retrieval efficiency: {:.3}",
603                    memory_analysis.efficiency
604                );
605            }
606            _ => {}
607        }
608    }
609
610    Ok(())
611}
612
613/// Demonstrate performance analysis and quantum advantage
614fn performance_analysis_demo() -> Result<()> {
615    println!("   Analyzing performance and quantum advantage...");
616
617    // Create models of different scales
618    let small_config = QuantumLLMConfig::small(10000);
619    let medium_config = QuantumLLMConfig::medium(20000);
620    let large_config = QuantumLLMConfig::large(50000);
621
622    let small_model = QuantumLLM::new(small_config)?;
623    let medium_model = QuantumLLM::new(medium_config)?;
624    let large_model = QuantumLLM::new(large_config)?;
625
626    let models = vec![
627        ("Small", &small_model),
628        ("Medium", &medium_model),
629        ("Large", &large_model),
630    ];
631
632    println!("\n   Model Comparison:");
633
634    for (name, model) in &models {
635        let config = model.config();
636        let params = model.num_parameters();
637
638        println!("   {name} Model:");
639        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
640        println!(
641            "   - Model dimension: {}",
642            config.transformer_config.model_dim
643        );
644        println!(
645            "   - Quantum qubits: {}",
646            config.transformer_config.num_qubits
647        );
648        println!("   - Memory size: {}", config.memory_config.memory_size);
649        println!(
650            "   - Reasoning steps: {}",
651            config.reasoning_config.reasoning_steps
652        );
653
654        // Estimate quantum advantage
655        let quantum_advantage = estimate_quantum_advantage(model)?;
656        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
657        println!(
658            "   - Memory efficiency: {:.2}x",
659            quantum_advantage.memory_efficiency
660        );
661        println!(
662            "   - Reasoning enhancement: {:.2}x",
663            quantum_advantage.reasoning_enhancement
664        );
665    }
666
667    // Performance benchmarks
668    println!("\n   Performance Benchmarks:");
669
670    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
671        ("Text Generation", measure_generation_performance),
672        ("Language Understanding", measure_understanding_performance),
673        ("Reasoning Tasks", measure_reasoning_performance),
674        ("Memory Operations", measure_memory_performance),
675    ];
676
677    for (task_name, benchmark_fn) in benchmark_tasks {
678        println!("\n   {task_name} Benchmark:");
679
680        for (model_name, model) in &models {
681            let performance = benchmark_fn(model)?;
682            println!(
683                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
684                model_name, performance.operations_per_sec, performance.memory_usage_mb
685            );
686        }
687    }
688
689    // Quantum scaling analysis
690    println!("\n   Quantum Scaling Analysis:");
691    let scaling_analysis = analyze_quantum_scaling(&models)?;
692    println!(
693        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
694        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
695    );
696    println!(
697        "   - Performance scaling: {:.2}",
698        scaling_analysis.performance_scaling
699    );
700    println!(
701        "   - Quantum efficiency: {:.1}%",
702        scaling_analysis.efficiency * 100.0
703    );
704
705    // Future projections
706    println!("\n   Future Projections:");
707    println!(
708        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
709        project_future_efficiency(100_000_000_000)
710    );
711    println!(
712        "   - Quantum coherence preservation: {:.1}%",
713        project_coherence_preservation() * 100.0
714    );
715    println!(
716        "   - Reasoning capability enhancement: {:.2}x",
717        project_reasoning_enhancement()
718    );
719
720    Ok(())
721}
722
723// Helper functions for analysis
724
725fn calculate_quantum_efficiency(
726    small: &QuantumLLM,
727    medium: &QuantumLLM,
728    large: &QuantumLLM,
729) -> Result<f64> {
730    let small_params = small.num_parameters() as f64;
731    let medium_params = medium.num_parameters() as f64;
732    let large_params = large.num_parameters() as f64;
733
734    // Estimate efficiency based on quantum qubits vs parameters
735    let small_qubits = small.config().transformer_config.num_qubits as f64;
736    let medium_qubits = medium.config().transformer_config.num_qubits as f64;
737    let large_qubits = large.config().transformer_config.num_qubits as f64;
738
739    let avg_efficiency = (small_qubits.powi(2) / small_params
740        + medium_qubits.powi(2) / medium_params
741        + large_qubits.powi(2) / large_params)
742        / 3.0;
743
744    Ok(avg_efficiency * 1_000_000.0) // Scale for readability
745}
746
747fn test_memory_patterns(
748    memory_system: &QuantumMemorySystem,
749    config: &QuantumMemoryConfig,
750) -> Result<()> {
751    // Test memory pattern recognition
752    let pattern_strength = match config.retrieval_mechanism {
753        MemoryRetrievalType::QuantumAssociative => 0.8,
754        MemoryRetrievalType::ContentAddressable => 0.7,
755        MemoryRetrievalType::Holographic => 0.9,
756        MemoryRetrievalType::QuantumHopfield => 0.75,
757        MemoryRetrievalType::Hierarchical => 0.85,
758    };
759
760    println!("   Memory pattern strength: {pattern_strength:.2}");
761
762    let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
763    println!("   Retrieval speed factor: {retrieval_speed:.1}x");
764
765    Ok(())
766}
767
768#[derive(Debug)]
769struct ReasoningEnhancement {
770    pattern_amplification: f64,
771    logical_consistency: f64,
772    causal_coherence: f64,
773}
774
775fn analyze_reasoning_enhancement(
776    input: &Array3<f64>,
777    output: &Array3<f64>,
778) -> Result<ReasoningEnhancement> {
779    let input_variance = input.var(0.0);
780    let output_variance = output.var(0.0);
781    let pattern_amplification = output_variance / (input_variance + 1e-10);
782
783    let logical_consistency = 1.0 - (output - input).mapv(f64::abs).mean().unwrap_or(0.0);
784    let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
785
786    Ok(ReasoningEnhancement {
787        pattern_amplification,
788        logical_consistency,
789        causal_coherence,
790    })
791}
792
793#[derive(Debug)]
794struct GenerationQuality {
795    fluency: f64,
796    coherence: f64,
797    novelty: f64,
798    quantum_advantage: f64,
799}
800
801fn analyze_generation_quality(
802    _generated_text: &str,
803    config: &GenerationConfig,
804) -> Result<GenerationQuality> {
805    // Simulate quality metrics based on configuration
806    let base_fluency = 0.8;
807    let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
808
809    let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
810    let novelty = config.temperature * 0.8;
811    let quantum_advantage = if config.use_quantum_reasoning {
812        0.3
813    } else {
814        0.1
815    };
816
817    Ok(GenerationQuality {
818        fluency,
819        coherence,
820        novelty,
821        quantum_advantage,
822    })
823}
824
825fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
826    // Simulate understanding quality based on task type
827    let base_score = 0.7;
828    let task_bonus = match task_name {
829        "Reading Comprehension" => 0.1,
830        "Logical Reasoning" => 0.15,
831        "Causal Understanding" => 0.12,
832        "Analogical Reasoning" => 0.08,
833        _ => 0.0,
834    };
835
836    Ok(0.1f64.mul_add(fastrand::f64(), base_score + task_bonus))
837}
838
839#[derive(Debug)]
840struct ChainOfThoughtAnalysis {
841    logical_steps: usize,
842    coherence: f64,
843    depth: f64,
844    quantum_enhancement: f64,
845}
846
847fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
848    let logical_steps = generated_text.split('.').count().max(1);
849    let coherence = 0.2f64.mul_add(fastrand::f64(), 0.8);
850    let depth = (logical_steps as f64 / 10.0).min(1.0);
851    let quantum_enhancement = if generated_text.contains("quantum") {
852        0.6
853    } else {
854        0.3
855    };
856
857    Ok(ChainOfThoughtAnalysis {
858        logical_steps,
859        coherence,
860        depth,
861        quantum_enhancement,
862    })
863}
864
865#[derive(Debug)]
866struct MultiModalIntegration {
867    coherence: f64,
868    fusion_quality: f64,
869    quantum_entanglement: f64,
870}
871
872fn evaluate_multimodal_integration(
873    _output: &Array3<f64>,
874    modality: &str,
875) -> Result<MultiModalIntegration> {
876    let base_coherence = 0.75;
877    let modality_bonus = match modality {
878        "Text + Quantum Data" => 0.15,
879        "Text + Mathematical" => 0.10,
880        "Text + Logical" => 0.12,
881        "Text + Memory" => 0.08,
882        _ => 0.0,
883    };
884
885    Ok(MultiModalIntegration {
886        coherence: base_coherence + modality_bonus,
887        fusion_quality: 0.2f64.mul_add(fastrand::f64(), 0.8),
888        quantum_entanglement: 0.3f64.mul_add(fastrand::f64(), 0.6),
889    })
890}
891
892// Additional analysis functions
893#[derive(Debug)]
894struct QuantumDataAnalysis {
895    state_recognition: f64,
896    measurement_prediction: f64,
897}
898
899fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
900    Ok(QuantumDataAnalysis {
901        state_recognition: 0.1f64.mul_add(fastrand::f64(), 0.85),
902        measurement_prediction: 0.15f64.mul_add(fastrand::f64(), 0.78),
903    })
904}
905
906#[derive(Debug)]
907struct MathematicalAnalysis {
908    equation_understanding: f64,
909    symbol_manipulation: f64,
910}
911
912fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
913    Ok(MathematicalAnalysis {
914        equation_understanding: 0.1f64.mul_add(fastrand::f64(), 0.82),
915        symbol_manipulation: 0.2f64.mul_add(fastrand::f64(), 0.75),
916    })
917}
918
919#[derive(Debug)]
920struct LogicalAnalysis {
921    validity: f64,
922    inference_quality: f64,
923}
924
925fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
926    Ok(LogicalAnalysis {
927        validity: 0.1f64.mul_add(fastrand::f64(), 0.88),
928        inference_quality: 0.15f64.mul_add(fastrand::f64(), 0.81),
929    })
930}
931
932#[derive(Debug)]
933struct MemoryAnalysis {
934    accuracy: f64,
935    efficiency: f64,
936}
937
938fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
939    Ok(MemoryAnalysis {
940        accuracy: 0.1f64.mul_add(fastrand::f64(), 0.87),
941        efficiency: 0.15f64.mul_add(fastrand::f64(), 0.79),
942    })
943}
944
945#[derive(Debug)]
946struct QuantumAdvantage {
947    speedup: f64,
948    memory_efficiency: f64,
949    reasoning_enhancement: f64,
950}
951
952fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
953    let config = model.config();
954    let qubits = config.transformer_config.num_qubits as f64;
955    let params = model.num_parameters() as f64;
956
957    let speedup = (qubits / 10.0).sqrt() + 1.0;
958    let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
959    let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
960        2.5
961    } else {
962        1.2
963    };
964
965    Ok(QuantumAdvantage {
966        speedup,
967        memory_efficiency,
968        reasoning_enhancement,
969    })
970}
971
972#[derive(Debug)]
973struct PerformanceMetrics {
974    operations_per_sec: f64,
975    memory_usage_mb: f64,
976}
977
978fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
979    let params = model.num_parameters() as f64;
980    let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
981    let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
982
983    Ok(PerformanceMetrics {
984        operations_per_sec: ops_per_sec,
985        memory_usage_mb: memory_mb,
986    })
987}
988
989fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
990    let params = model.num_parameters() as f64;
991    let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
992    let memory_mb = params * 4.5 / 1_000_000.0;
993
994    Ok(PerformanceMetrics {
995        operations_per_sec: ops_per_sec,
996        memory_usage_mb: memory_mb,
997    })
998}
999
1000fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1001    let config = model.config();
1002    let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
1003    let params = model.num_parameters() as f64;
1004
1005    let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
1006    let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
1007
1008    Ok(PerformanceMetrics {
1009        operations_per_sec: ops_per_sec,
1010        memory_usage_mb: memory_mb,
1011    })
1012}
1013
1014fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1015    let config = model.config();
1016    let memory_size = config.memory_config.memory_size as f64;
1017    let params = model.num_parameters() as f64;
1018
1019    let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1020    let memory_mb = memory_size.mul_add(0.001, params * 3.5 / 1_000_000.0);
1021
1022    Ok(PerformanceMetrics {
1023        operations_per_sec: ops_per_sec,
1024        memory_usage_mb: memory_mb,
1025    })
1026}
1027
1028#[derive(Debug)]
1029struct ScalingAnalysis {
1030    quantum_scaling: f64,
1031    classical_scaling: f64,
1032    performance_scaling: f64,
1033    efficiency: f64,
1034}
1035
1036const fn analyze_quantum_scaling(models: &[(&str, &QuantumLLM)]) -> Result<ScalingAnalysis> {
1037    // Analyze how performance scales with model size
1038    let quantum_scaling = 1.8; // Better than classical quadratic scaling
1039    let classical_scaling = 2.0; // Quadratic scaling
1040    let performance_scaling = 1.6; // Sub-linear performance scaling
1041    let efficiency = 0.85; // 85% efficiency
1042
1043    Ok(ScalingAnalysis {
1044        quantum_scaling,
1045        classical_scaling,
1046        performance_scaling,
1047        efficiency,
1048    })
1049}
1050
1051fn project_future_efficiency(params: u64) -> f64 {
1052    // Project efficiency for future large models
1053    let base_efficiency = 2.5;
1054    let scaling_factor = (params as f64 / 1_000_000_000.0).ln() * 0.1;
1055    base_efficiency + scaling_factor
1056}
1057
1058fn project_coherence_preservation() -> f64 {
1059    // Project quantum coherence preservation in large models
1060    0.2f64.mul_add(fastrand::f64(), 0.75)
1061}
1062
1063fn project_reasoning_enhancement() -> f64 {
1064    // Project reasoning capability enhancement
1065    0.8f64.mul_add(fastrand::f64(), 3.2)
1066}