pub struct QuantumNAS { /* private fields */ }Expand description
Main quantum neural architecture search engine
Implementations§
Source§impl QuantumNAS
impl QuantumNAS
Sourcepub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self
pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self
Create a new quantum NAS instance
Examples found in repository?
examples/quantum_nas.rs (line 62)
50fn evolutionary_search_demo() -> Result<()> {
51 // Create search space
52 let search_space = create_default_search_space();
53
54 // Configure evolutionary strategy
55 let strategy = SearchStrategy::Evolutionary {
56 population_size: 20,
57 mutation_rate: 0.2,
58 crossover_rate: 0.7,
59 elitism_ratio: 0.1,
60 };
61
62 let mut nas = QuantumNAS::new(strategy, search_space);
63
64 println!(" Created evolutionary NAS:");
65 println!(" - Population size: 20");
66 println!(" - Mutation rate: 0.2");
67 println!(" - Crossover rate: 0.7");
68 println!(" - Elitism ratio: 0.1");
69
70 // Set evaluation data (synthetic for demo)
71 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
72 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
73 nas.set_evaluation_data(eval_data, eval_labels);
74
75 // Run search
76 println!("\n Running evolutionary search for 10 generations...");
77 let best_architectures = nas.search(10)?;
78
79 println!(" Search complete!");
80 println!(
81 " - Best architectures found: {}",
82 best_architectures.len()
83 );
84
85 if let Some(best) = best_architectures.first() {
86 println!(" - Best architecture: {best}");
87 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
88 println!(" - Parameter count: {}", best.metrics.parameter_count);
89
90 if let Some(expressivity) = best.properties.expressivity {
91 println!(" - Expressivity: {expressivity:.3}");
92 }
93 }
94
95 // Show search summary
96 let summary = nas.get_search_summary();
97 println!(
98 " - Total architectures evaluated: {}",
99 summary.total_architectures_evaluated
100 );
101 println!(" - Pareto front size: {}", summary.pareto_front_size);
102
103 Ok(())
104}
105
106/// Random search baseline demonstration
107fn random_search_demo() -> Result<()> {
108 let search_space = create_default_search_space();
109 let strategy = SearchStrategy::Random { num_samples: 50 };
110
111 let mut nas = QuantumNAS::new(strategy, search_space);
112
113 println!(" Created random search NAS:");
114 println!(" - Number of samples: 50");
115
116 // Generate synthetic evaluation data
117 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
118 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
119 });
120 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
121 nas.set_evaluation_data(eval_data, eval_labels);
122
123 println!("\n Running random search...");
124 let best_architectures = nas.search(50)?;
125
126 println!(" Random search complete!");
127 if let Some(best) = best_architectures.first() {
128 println!(" - Best random architecture: {best}");
129 if let Some(accuracy) = best.metrics.accuracy {
130 println!(" - Accuracy: {accuracy:.3}");
131 }
132 }
133
134 Ok(())
135}
136
137/// Reinforcement learning search demonstration
138fn rl_search_demo() -> Result<()> {
139 let search_space = create_custom_search_space();
140
141 let strategy = SearchStrategy::ReinforcementLearning {
142 agent_type: RLAgentType::PolicyGradient,
143 exploration_rate: 0.3,
144 learning_rate: 0.01,
145 };
146
147 let mut nas = QuantumNAS::new(strategy, search_space);
148
149 println!(" Created RL-based NAS:");
150 println!(" - Agent type: Policy Gradient");
151 println!(" - Exploration rate: 0.3");
152 println!(" - Learning rate: 0.01");
153
154 println!("\n Running RL search for 100 episodes...");
155 let best_architectures = nas.search(100)?;
156
157 println!(" RL search complete!");
158 println!(" - Architectures found: {}", best_architectures.len());
159
160 if let Some(best) = best_architectures.first() {
161 println!(" - Best RL architecture: {best}");
162 if let Some(entanglement) = best.properties.entanglement_capability {
163 println!(" - Entanglement capability: {entanglement:.3}");
164 }
165 }
166
167 Ok(())
168}
169
170/// Bayesian optimization search demonstration
171fn bayesian_search_demo() -> Result<()> {
172 let search_space = create_default_search_space();
173
174 let strategy = SearchStrategy::BayesianOptimization {
175 acquisition_function: AcquisitionFunction::ExpectedImprovement,
176 num_initial_points: 10,
177 };
178
179 let mut nas = QuantumNAS::new(strategy, search_space);
180
181 println!(" Created Bayesian optimization NAS:");
182 println!(" - Acquisition function: Expected Improvement");
183 println!(" - Initial random points: 10");
184
185 // Set up evaluation data
186 let eval_data = generate_quantum_data(60, 4);
187 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
188 nas.set_evaluation_data(eval_data, eval_labels);
189
190 println!("\n Running Bayesian optimization for 30 iterations...");
191 let best_architectures = nas.search(30)?;
192
193 println!(" Bayesian optimization complete!");
194 if let Some(best) = best_architectures.first() {
195 println!(" - Best Bayesian architecture: {best}");
196 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
197 println!(" - Hardware efficiency: {hardware_eff:.3}");
198 }
199 }
200
201 Ok(())
202}
203
204/// DARTS demonstration
205fn darts_demo() -> Result<()> {
206 let search_space = create_darts_search_space();
207
208 let strategy = SearchStrategy::DARTS {
209 learning_rate: 0.01,
210 weight_decay: 1e-4,
211 };
212
213 let mut nas = QuantumNAS::new(strategy, search_space);
214
215 println!(" Created DARTS NAS:");
216 println!(" - Learning rate: 0.01");
217 println!(" - Weight decay: 1e-4");
218 println!(" - Differentiable architecture search");
219
220 println!("\n Running DARTS for 200 epochs...");
221 let best_architectures = nas.search(200)?;
222
223 println!(" DARTS search complete!");
224 if let Some(best) = best_architectures.first() {
225 println!(" - DARTS architecture: {best}");
226 println!(" - Learned through gradient-based optimization");
227
228 if let Some(gradient_var) = best.properties.gradient_variance {
229 println!(" - Gradient variance: {gradient_var:.3}");
230 }
231 }
232
233 Ok(())
234}
235
236/// Multi-objective optimization demonstration
237fn multi_objective_demo() -> Result<()> {
238 let search_space = create_default_search_space();
239
240 let strategy = SearchStrategy::Evolutionary {
241 population_size: 30,
242 mutation_rate: 0.15,
243 crossover_rate: 0.8,
244 elitism_ratio: 0.2,
245 };
246
247 let mut nas = QuantumNAS::new(strategy, search_space);
248
249 println!(" Multi-objective optimization:");
250 println!(" - Optimizing accuracy vs. complexity");
251 println!(" - Finding Pareto-optimal architectures");
252
253 // Run search
254 nas.search(15)?;
255
256 // Analyze Pareto front
257 let pareto_front = nas.get_pareto_front();
258 println!(" Pareto front analysis:");
259 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
260
261 for (i, arch) in pareto_front.iter().take(3).enumerate() {
262 println!(
263 " Architecture {}: {} params, {:.3} accuracy",
264 i + 1,
265 arch.metrics.parameter_count,
266 arch.metrics.accuracy.unwrap_or(0.0)
267 );
268 }
269
270 Ok(())
271}Sourcepub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>)
pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>)
Set evaluation dataset
Examples found in repository?
examples/quantum_nas.rs (line 73)
50fn evolutionary_search_demo() -> Result<()> {
51 // Create search space
52 let search_space = create_default_search_space();
53
54 // Configure evolutionary strategy
55 let strategy = SearchStrategy::Evolutionary {
56 population_size: 20,
57 mutation_rate: 0.2,
58 crossover_rate: 0.7,
59 elitism_ratio: 0.1,
60 };
61
62 let mut nas = QuantumNAS::new(strategy, search_space);
63
64 println!(" Created evolutionary NAS:");
65 println!(" - Population size: 20");
66 println!(" - Mutation rate: 0.2");
67 println!(" - Crossover rate: 0.7");
68 println!(" - Elitism ratio: 0.1");
69
70 // Set evaluation data (synthetic for demo)
71 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
72 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
73 nas.set_evaluation_data(eval_data, eval_labels);
74
75 // Run search
76 println!("\n Running evolutionary search for 10 generations...");
77 let best_architectures = nas.search(10)?;
78
79 println!(" Search complete!");
80 println!(
81 " - Best architectures found: {}",
82 best_architectures.len()
83 );
84
85 if let Some(best) = best_architectures.first() {
86 println!(" - Best architecture: {best}");
87 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
88 println!(" - Parameter count: {}", best.metrics.parameter_count);
89
90 if let Some(expressivity) = best.properties.expressivity {
91 println!(" - Expressivity: {expressivity:.3}");
92 }
93 }
94
95 // Show search summary
96 let summary = nas.get_search_summary();
97 println!(
98 " - Total architectures evaluated: {}",
99 summary.total_architectures_evaluated
100 );
101 println!(" - Pareto front size: {}", summary.pareto_front_size);
102
103 Ok(())
104}
105
106/// Random search baseline demonstration
107fn random_search_demo() -> Result<()> {
108 let search_space = create_default_search_space();
109 let strategy = SearchStrategy::Random { num_samples: 50 };
110
111 let mut nas = QuantumNAS::new(strategy, search_space);
112
113 println!(" Created random search NAS:");
114 println!(" - Number of samples: 50");
115
116 // Generate synthetic evaluation data
117 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
118 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
119 });
120 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
121 nas.set_evaluation_data(eval_data, eval_labels);
122
123 println!("\n Running random search...");
124 let best_architectures = nas.search(50)?;
125
126 println!(" Random search complete!");
127 if let Some(best) = best_architectures.first() {
128 println!(" - Best random architecture: {best}");
129 if let Some(accuracy) = best.metrics.accuracy {
130 println!(" - Accuracy: {accuracy:.3}");
131 }
132 }
133
134 Ok(())
135}
136
137/// Reinforcement learning search demonstration
138fn rl_search_demo() -> Result<()> {
139 let search_space = create_custom_search_space();
140
141 let strategy = SearchStrategy::ReinforcementLearning {
142 agent_type: RLAgentType::PolicyGradient,
143 exploration_rate: 0.3,
144 learning_rate: 0.01,
145 };
146
147 let mut nas = QuantumNAS::new(strategy, search_space);
148
149 println!(" Created RL-based NAS:");
150 println!(" - Agent type: Policy Gradient");
151 println!(" - Exploration rate: 0.3");
152 println!(" - Learning rate: 0.01");
153
154 println!("\n Running RL search for 100 episodes...");
155 let best_architectures = nas.search(100)?;
156
157 println!(" RL search complete!");
158 println!(" - Architectures found: {}", best_architectures.len());
159
160 if let Some(best) = best_architectures.first() {
161 println!(" - Best RL architecture: {best}");
162 if let Some(entanglement) = best.properties.entanglement_capability {
163 println!(" - Entanglement capability: {entanglement:.3}");
164 }
165 }
166
167 Ok(())
168}
169
170/// Bayesian optimization search demonstration
171fn bayesian_search_demo() -> Result<()> {
172 let search_space = create_default_search_space();
173
174 let strategy = SearchStrategy::BayesianOptimization {
175 acquisition_function: AcquisitionFunction::ExpectedImprovement,
176 num_initial_points: 10,
177 };
178
179 let mut nas = QuantumNAS::new(strategy, search_space);
180
181 println!(" Created Bayesian optimization NAS:");
182 println!(" - Acquisition function: Expected Improvement");
183 println!(" - Initial random points: 10");
184
185 // Set up evaluation data
186 let eval_data = generate_quantum_data(60, 4);
187 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
188 nas.set_evaluation_data(eval_data, eval_labels);
189
190 println!("\n Running Bayesian optimization for 30 iterations...");
191 let best_architectures = nas.search(30)?;
192
193 println!(" Bayesian optimization complete!");
194 if let Some(best) = best_architectures.first() {
195 println!(" - Best Bayesian architecture: {best}");
196 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
197 println!(" - Hardware efficiency: {hardware_eff:.3}");
198 }
199 }
200
201 Ok(())
202}Sourcepub fn search(
&mut self,
max_iterations: usize,
) -> Result<Vec<ArchitectureCandidate>>
pub fn search( &mut self, max_iterations: usize, ) -> Result<Vec<ArchitectureCandidate>>
Search for optimal architectures
Examples found in repository?
examples/quantum_nas.rs (line 77)
50fn evolutionary_search_demo() -> Result<()> {
51 // Create search space
52 let search_space = create_default_search_space();
53
54 // Configure evolutionary strategy
55 let strategy = SearchStrategy::Evolutionary {
56 population_size: 20,
57 mutation_rate: 0.2,
58 crossover_rate: 0.7,
59 elitism_ratio: 0.1,
60 };
61
62 let mut nas = QuantumNAS::new(strategy, search_space);
63
64 println!(" Created evolutionary NAS:");
65 println!(" - Population size: 20");
66 println!(" - Mutation rate: 0.2");
67 println!(" - Crossover rate: 0.7");
68 println!(" - Elitism ratio: 0.1");
69
70 // Set evaluation data (synthetic for demo)
71 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
72 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
73 nas.set_evaluation_data(eval_data, eval_labels);
74
75 // Run search
76 println!("\n Running evolutionary search for 10 generations...");
77 let best_architectures = nas.search(10)?;
78
79 println!(" Search complete!");
80 println!(
81 " - Best architectures found: {}",
82 best_architectures.len()
83 );
84
85 if let Some(best) = best_architectures.first() {
86 println!(" - Best architecture: {best}");
87 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
88 println!(" - Parameter count: {}", best.metrics.parameter_count);
89
90 if let Some(expressivity) = best.properties.expressivity {
91 println!(" - Expressivity: {expressivity:.3}");
92 }
93 }
94
95 // Show search summary
96 let summary = nas.get_search_summary();
97 println!(
98 " - Total architectures evaluated: {}",
99 summary.total_architectures_evaluated
100 );
101 println!(" - Pareto front size: {}", summary.pareto_front_size);
102
103 Ok(())
104}
105
106/// Random search baseline demonstration
107fn random_search_demo() -> Result<()> {
108 let search_space = create_default_search_space();
109 let strategy = SearchStrategy::Random { num_samples: 50 };
110
111 let mut nas = QuantumNAS::new(strategy, search_space);
112
113 println!(" Created random search NAS:");
114 println!(" - Number of samples: 50");
115
116 // Generate synthetic evaluation data
117 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
118 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
119 });
120 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
121 nas.set_evaluation_data(eval_data, eval_labels);
122
123 println!("\n Running random search...");
124 let best_architectures = nas.search(50)?;
125
126 println!(" Random search complete!");
127 if let Some(best) = best_architectures.first() {
128 println!(" - Best random architecture: {best}");
129 if let Some(accuracy) = best.metrics.accuracy {
130 println!(" - Accuracy: {accuracy:.3}");
131 }
132 }
133
134 Ok(())
135}
136
137/// Reinforcement learning search demonstration
138fn rl_search_demo() -> Result<()> {
139 let search_space = create_custom_search_space();
140
141 let strategy = SearchStrategy::ReinforcementLearning {
142 agent_type: RLAgentType::PolicyGradient,
143 exploration_rate: 0.3,
144 learning_rate: 0.01,
145 };
146
147 let mut nas = QuantumNAS::new(strategy, search_space);
148
149 println!(" Created RL-based NAS:");
150 println!(" - Agent type: Policy Gradient");
151 println!(" - Exploration rate: 0.3");
152 println!(" - Learning rate: 0.01");
153
154 println!("\n Running RL search for 100 episodes...");
155 let best_architectures = nas.search(100)?;
156
157 println!(" RL search complete!");
158 println!(" - Architectures found: {}", best_architectures.len());
159
160 if let Some(best) = best_architectures.first() {
161 println!(" - Best RL architecture: {best}");
162 if let Some(entanglement) = best.properties.entanglement_capability {
163 println!(" - Entanglement capability: {entanglement:.3}");
164 }
165 }
166
167 Ok(())
168}
169
170/// Bayesian optimization search demonstration
171fn bayesian_search_demo() -> Result<()> {
172 let search_space = create_default_search_space();
173
174 let strategy = SearchStrategy::BayesianOptimization {
175 acquisition_function: AcquisitionFunction::ExpectedImprovement,
176 num_initial_points: 10,
177 };
178
179 let mut nas = QuantumNAS::new(strategy, search_space);
180
181 println!(" Created Bayesian optimization NAS:");
182 println!(" - Acquisition function: Expected Improvement");
183 println!(" - Initial random points: 10");
184
185 // Set up evaluation data
186 let eval_data = generate_quantum_data(60, 4);
187 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
188 nas.set_evaluation_data(eval_data, eval_labels);
189
190 println!("\n Running Bayesian optimization for 30 iterations...");
191 let best_architectures = nas.search(30)?;
192
193 println!(" Bayesian optimization complete!");
194 if let Some(best) = best_architectures.first() {
195 println!(" - Best Bayesian architecture: {best}");
196 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
197 println!(" - Hardware efficiency: {hardware_eff:.3}");
198 }
199 }
200
201 Ok(())
202}
203
204/// DARTS demonstration
205fn darts_demo() -> Result<()> {
206 let search_space = create_darts_search_space();
207
208 let strategy = SearchStrategy::DARTS {
209 learning_rate: 0.01,
210 weight_decay: 1e-4,
211 };
212
213 let mut nas = QuantumNAS::new(strategy, search_space);
214
215 println!(" Created DARTS NAS:");
216 println!(" - Learning rate: 0.01");
217 println!(" - Weight decay: 1e-4");
218 println!(" - Differentiable architecture search");
219
220 println!("\n Running DARTS for 200 epochs...");
221 let best_architectures = nas.search(200)?;
222
223 println!(" DARTS search complete!");
224 if let Some(best) = best_architectures.first() {
225 println!(" - DARTS architecture: {best}");
226 println!(" - Learned through gradient-based optimization");
227
228 if let Some(gradient_var) = best.properties.gradient_variance {
229 println!(" - Gradient variance: {gradient_var:.3}");
230 }
231 }
232
233 Ok(())
234}
235
236/// Multi-objective optimization demonstration
237fn multi_objective_demo() -> Result<()> {
238 let search_space = create_default_search_space();
239
240 let strategy = SearchStrategy::Evolutionary {
241 population_size: 30,
242 mutation_rate: 0.15,
243 crossover_rate: 0.8,
244 elitism_ratio: 0.2,
245 };
246
247 let mut nas = QuantumNAS::new(strategy, search_space);
248
249 println!(" Multi-objective optimization:");
250 println!(" - Optimizing accuracy vs. complexity");
251 println!(" - Finding Pareto-optimal architectures");
252
253 // Run search
254 nas.search(15)?;
255
256 // Analyze Pareto front
257 let pareto_front = nas.get_pareto_front();
258 println!(" Pareto front analysis:");
259 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
260
261 for (i, arch) in pareto_front.iter().take(3).enumerate() {
262 println!(
263 " Architecture {}: {} params, {:.3} accuracy",
264 i + 1,
265 arch.metrics.parameter_count,
266 arch.metrics.accuracy.unwrap_or(0.0)
267 );
268 }
269
270 Ok(())
271}Sourcepub fn get_search_summary(&self) -> SearchSummary
pub fn get_search_summary(&self) -> SearchSummary
Get search results summary
Examples found in repository?
examples/quantum_nas.rs (line 96)
50fn evolutionary_search_demo() -> Result<()> {
51 // Create search space
52 let search_space = create_default_search_space();
53
54 // Configure evolutionary strategy
55 let strategy = SearchStrategy::Evolutionary {
56 population_size: 20,
57 mutation_rate: 0.2,
58 crossover_rate: 0.7,
59 elitism_ratio: 0.1,
60 };
61
62 let mut nas = QuantumNAS::new(strategy, search_space);
63
64 println!(" Created evolutionary NAS:");
65 println!(" - Population size: 20");
66 println!(" - Mutation rate: 0.2");
67 println!(" - Crossover rate: 0.7");
68 println!(" - Elitism ratio: 0.1");
69
70 // Set evaluation data (synthetic for demo)
71 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
72 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
73 nas.set_evaluation_data(eval_data, eval_labels);
74
75 // Run search
76 println!("\n Running evolutionary search for 10 generations...");
77 let best_architectures = nas.search(10)?;
78
79 println!(" Search complete!");
80 println!(
81 " - Best architectures found: {}",
82 best_architectures.len()
83 );
84
85 if let Some(best) = best_architectures.first() {
86 println!(" - Best architecture: {best}");
87 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
88 println!(" - Parameter count: {}", best.metrics.parameter_count);
89
90 if let Some(expressivity) = best.properties.expressivity {
91 println!(" - Expressivity: {expressivity:.3}");
92 }
93 }
94
95 // Show search summary
96 let summary = nas.get_search_summary();
97 println!(
98 " - Total architectures evaluated: {}",
99 summary.total_architectures_evaluated
100 );
101 println!(" - Pareto front size: {}", summary.pareto_front_size);
102
103 Ok(())
104}Sourcepub fn get_pareto_front(&self) -> &[ArchitectureCandidate]
pub fn get_pareto_front(&self) -> &[ArchitectureCandidate]
Get Pareto front
Examples found in repository?
examples/quantum_nas.rs (line 257)
237fn multi_objective_demo() -> Result<()> {
238 let search_space = create_default_search_space();
239
240 let strategy = SearchStrategy::Evolutionary {
241 population_size: 30,
242 mutation_rate: 0.15,
243 crossover_rate: 0.8,
244 elitism_ratio: 0.2,
245 };
246
247 let mut nas = QuantumNAS::new(strategy, search_space);
248
249 println!(" Multi-objective optimization:");
250 println!(" - Optimizing accuracy vs. complexity");
251 println!(" - Finding Pareto-optimal architectures");
252
253 // Run search
254 nas.search(15)?;
255
256 // Analyze Pareto front
257 let pareto_front = nas.get_pareto_front();
258 println!(" Pareto front analysis:");
259 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
260
261 for (i, arch) in pareto_front.iter().take(3).enumerate() {
262 println!(
263 " Architecture {}: {} params, {:.3} accuracy",
264 i + 1,
265 arch.metrics.parameter_count,
266 arch.metrics.accuracy.unwrap_or(0.0)
267 );
268 }
269
270 Ok(())
271}Auto Trait Implementations§
impl Freeze for QuantumNAS
impl RefUnwindSafe for QuantumNAS
impl Send for QuantumNAS
impl Sync for QuantumNAS
impl Unpin for QuantumNAS
impl UnwindSafe for QuantumNAS
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.