1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10use scirs2_core::ndarray::{Array1, Array2};
11use scirs2_core::random::prelude::*;
12
13fn main() -> Result<()> {
14 println!("=== Quantum Neural Architecture Search Demo ===\n");
15
16 println!("1. Evolutionary Algorithm Search...");
18 evolutionary_search_demo()?;
19
20 println!("\n2. Random Search Baseline...");
22 random_search_demo()?;
23
24 println!("\n3. Reinforcement Learning Search...");
26 rl_search_demo()?;
27
28 println!("\n4. Bayesian Optimization Search...");
30 bayesian_search_demo()?;
31
32 println!("\n5. DARTS (Differentiable Architecture Search)...");
34 darts_demo()?;
35
36 println!("\n6. Multi-Objective Optimization...");
38 multi_objective_demo()?;
39
40 println!("\n7. Architecture Analysis...");
42 architecture_analysis_demo()?;
43
44 println!("\n=== Quantum NAS Demo Complete ===");
45
46 Ok(())
47}
48
49fn evolutionary_search_demo() -> Result<()> {
51 let search_space = create_default_search_space();
53
54 let strategy = SearchStrategy::Evolutionary {
56 population_size: 20,
57 mutation_rate: 0.2,
58 crossover_rate: 0.7,
59 elitism_ratio: 0.1,
60 };
61
62 let mut nas = QuantumNAS::new(strategy, search_space);
63
64 println!(" Created evolutionary NAS:");
65 println!(" - Population size: 20");
66 println!(" - Mutation rate: 0.2");
67 println!(" - Crossover rate: 0.7");
68 println!(" - Elitism ratio: 0.1");
69
70 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
72 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
73 nas.set_evaluation_data(eval_data, eval_labels);
74
75 println!("\n Running evolutionary search for 10 generations...");
77 let best_architectures = nas.search(10)?;
78
79 println!(" Search complete!");
80 println!(
81 " - Best architectures found: {}",
82 best_architectures.len()
83 );
84
85 if let Some(best) = best_architectures.first() {
86 println!(" - Best architecture: {best}");
87 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
88 println!(" - Parameter count: {}", best.metrics.parameter_count);
89
90 if let Some(expressivity) = best.properties.expressivity {
91 println!(" - Expressivity: {expressivity:.3}");
92 }
93 }
94
95 let summary = nas.get_search_summary();
97 println!(
98 " - Total architectures evaluated: {}",
99 summary.total_architectures_evaluated
100 );
101 println!(" - Pareto front size: {}", summary.pareto_front_size);
102
103 Ok(())
104}
105
106fn random_search_demo() -> Result<()> {
108 let search_space = create_default_search_space();
109 let strategy = SearchStrategy::Random { num_samples: 50 };
110
111 let mut nas = QuantumNAS::new(strategy, search_space);
112
113 println!(" Created random search NAS:");
114 println!(" - Number of samples: 50");
115
116 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
118 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
119 });
120 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
121 nas.set_evaluation_data(eval_data, eval_labels);
122
123 println!("\n Running random search...");
124 let best_architectures = nas.search(50)?;
125
126 println!(" Random search complete!");
127 if let Some(best) = best_architectures.first() {
128 println!(" - Best random architecture: {best}");
129 if let Some(accuracy) = best.metrics.accuracy {
130 println!(" - Accuracy: {accuracy:.3}");
131 }
132 }
133
134 Ok(())
135}
136
137fn rl_search_demo() -> Result<()> {
139 let search_space = create_custom_search_space();
140
141 let strategy = SearchStrategy::ReinforcementLearning {
142 agent_type: RLAgentType::PolicyGradient,
143 exploration_rate: 0.3,
144 learning_rate: 0.01,
145 };
146
147 let mut nas = QuantumNAS::new(strategy, search_space);
148
149 println!(" Created RL-based NAS:");
150 println!(" - Agent type: Policy Gradient");
151 println!(" - Exploration rate: 0.3");
152 println!(" - Learning rate: 0.01");
153
154 println!("\n Running RL search for 100 episodes...");
155 let best_architectures = nas.search(100)?;
156
157 println!(" RL search complete!");
158 println!(" - Architectures found: {}", best_architectures.len());
159
160 if let Some(best) = best_architectures.first() {
161 println!(" - Best RL architecture: {best}");
162 if let Some(entanglement) = best.properties.entanglement_capability {
163 println!(" - Entanglement capability: {entanglement:.3}");
164 }
165 }
166
167 Ok(())
168}
169
170fn bayesian_search_demo() -> Result<()> {
172 let search_space = create_default_search_space();
173
174 let strategy = SearchStrategy::BayesianOptimization {
175 acquisition_function: AcquisitionFunction::ExpectedImprovement,
176 num_initial_points: 10,
177 };
178
179 let mut nas = QuantumNAS::new(strategy, search_space);
180
181 println!(" Created Bayesian optimization NAS:");
182 println!(" - Acquisition function: Expected Improvement");
183 println!(" - Initial random points: 10");
184
185 let eval_data = generate_quantum_data(60, 4);
187 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
188 nas.set_evaluation_data(eval_data, eval_labels);
189
190 println!("\n Running Bayesian optimization for 30 iterations...");
191 let best_architectures = nas.search(30)?;
192
193 println!(" Bayesian optimization complete!");
194 if let Some(best) = best_architectures.first() {
195 println!(" - Best Bayesian architecture: {best}");
196 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
197 println!(" - Hardware efficiency: {hardware_eff:.3}");
198 }
199 }
200
201 Ok(())
202}
203
204fn darts_demo() -> Result<()> {
206 let search_space = create_darts_search_space();
207
208 let strategy = SearchStrategy::DARTS {
209 learning_rate: 0.01,
210 weight_decay: 1e-4,
211 };
212
213 let mut nas = QuantumNAS::new(strategy, search_space);
214
215 println!(" Created DARTS NAS:");
216 println!(" - Learning rate: 0.01");
217 println!(" - Weight decay: 1e-4");
218 println!(" - Differentiable architecture search");
219
220 println!("\n Running DARTS for 200 epochs...");
221 let best_architectures = nas.search(200)?;
222
223 println!(" DARTS search complete!");
224 if let Some(best) = best_architectures.first() {
225 println!(" - DARTS architecture: {best}");
226 println!(" - Learned through gradient-based optimization");
227
228 if let Some(gradient_var) = best.properties.gradient_variance {
229 println!(" - Gradient variance: {gradient_var:.3}");
230 }
231 }
232
233 Ok(())
234}
235
236fn multi_objective_demo() -> Result<()> {
238 let search_space = create_default_search_space();
239
240 let strategy = SearchStrategy::Evolutionary {
241 population_size: 30,
242 mutation_rate: 0.15,
243 crossover_rate: 0.8,
244 elitism_ratio: 0.2,
245 };
246
247 let mut nas = QuantumNAS::new(strategy, search_space);
248
249 println!(" Multi-objective optimization:");
250 println!(" - Optimizing accuracy vs. complexity");
251 println!(" - Finding Pareto-optimal architectures");
252
253 nas.search(15)?;
255
256 let pareto_front = nas.get_pareto_front();
258 println!(" Pareto front analysis:");
259 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
260
261 for (i, arch) in pareto_front.iter().take(3).enumerate() {
262 println!(
263 " Architecture {}: {} params, {:.3} accuracy",
264 i + 1,
265 arch.metrics.parameter_count,
266 arch.metrics.accuracy.unwrap_or(0.0)
267 );
268 }
269
270 Ok(())
271}
272
273fn architecture_analysis_demo() -> Result<()> {
275 println!(" Analyzing quantum circuit architectures...");
276
277 let architectures = create_sample_architectures();
279
280 println!("\n Architecture comparison:");
281 for (i, arch) in architectures.iter().enumerate() {
282 println!(" Architecture {}:", i + 1);
283 println!(" - Layers: {}", arch.layers.len());
284 println!(" - Qubits: {}", arch.num_qubits);
285 println!(" - Circuit depth: {}", arch.metrics.circuit_depth);
286
287 if let Some(expressivity) = arch.properties.expressivity {
288 println!(" - Expressivity: {expressivity:.3}");
289 }
290
291 if let Some(entanglement) = arch.properties.entanglement_capability {
292 println!(" - Entanglement: {entanglement:.3}");
293 }
294
295 if let Some(barren_plateau) = arch.properties.barren_plateau_score {
296 println!(" - Barren plateau risk: {barren_plateau:.3}");
297 }
298
299 println!();
300 }
301
302 println!(" Performance trade-offs:");
304 println!(" - Deeper circuits: higher expressivity, more barren plateaus");
305 println!(" - More entanglement: better feature mixing, higher noise sensitivity");
306 println!(" - More parameters: greater capacity, overfitting risk");
307
308 Ok(())
309}
310
311fn generate_quantum_data(samples: usize, features: usize) -> Array2<f64> {
313 Array2::from_shape_fn((samples, features), |(i, j)| {
314 let phase = (i as f64).mul_add(0.1, j as f64 * 0.2).sin();
315 let amplitude = (i as f64 / samples as f64).exp() * 0.5;
316 amplitude * phase + 0.1 * fastrand::f64()
317 })
318}
319
320fn create_custom_search_space() -> SearchSpace {
322 SearchSpace {
323 layer_types: vec![
324 QNNLayerType::VariationalLayer { num_params: 4 },
325 QNNLayerType::VariationalLayer { num_params: 8 },
326 QNNLayerType::EntanglementLayer {
327 connectivity: "circular".to_string(),
328 },
329 QNNLayerType::EntanglementLayer {
330 connectivity: "linear".to_string(),
331 },
332 ],
333 depth_range: (1, 5),
334 qubit_constraints: QubitConstraints {
335 min_qubits: 3,
336 max_qubits: 6,
337 topology: Some(QuantumTopology::Ring),
338 },
339 param_ranges: vec![("variational_params".to_string(), (3, 12))]
340 .into_iter()
341 .collect(),
342 connectivity_patterns: vec!["linear".to_string(), "circular".to_string()],
343 measurement_bases: vec!["computational".to_string(), "Pauli-Z".to_string()],
344 }
345}
346
347fn create_darts_search_space() -> SearchSpace {
349 SearchSpace {
350 layer_types: vec![
351 QNNLayerType::VariationalLayer { num_params: 6 },
352 QNNLayerType::VariationalLayer { num_params: 9 },
353 QNNLayerType::EntanglementLayer {
354 connectivity: "full".to_string(),
355 },
356 ],
357 depth_range: (3, 6),
358 qubit_constraints: QubitConstraints {
359 min_qubits: 4,
360 max_qubits: 4, topology: Some(QuantumTopology::Complete),
362 },
363 param_ranges: vec![("variational_params".to_string(), (6, 9))]
364 .into_iter()
365 .collect(),
366 connectivity_patterns: vec!["full".to_string()],
367 measurement_bases: vec!["computational".to_string()],
368 }
369}
370
371fn create_sample_architectures() -> Vec<ArchitectureCandidate> {
373 vec![
374 ArchitectureCandidate {
376 id: "simple".to_string(),
377 layers: vec![
378 QNNLayerType::EncodingLayer { num_features: 4 },
379 QNNLayerType::VariationalLayer { num_params: 6 },
380 QNNLayerType::MeasurementLayer {
381 measurement_basis: "computational".to_string(),
382 },
383 ],
384 num_qubits: 3,
385 metrics: ArchitectureMetrics {
386 accuracy: Some(0.65),
387 loss: Some(0.4),
388 circuit_depth: 3,
389 parameter_count: 6,
390 training_time: Some(10.0),
391 memory_usage: Some(512),
392 hardware_efficiency: Some(0.8),
393 },
394 properties: ArchitectureProperties {
395 expressivity: Some(0.3),
396 entanglement_capability: Some(0.2),
397 gradient_variance: Some(0.1),
398 barren_plateau_score: Some(0.2),
399 noise_resilience: Some(0.7),
400 },
401 },
402 ArchitectureCandidate {
404 id: "complex".to_string(),
405 layers: vec![
406 QNNLayerType::EncodingLayer { num_features: 6 },
407 QNNLayerType::VariationalLayer { num_params: 12 },
408 QNNLayerType::EntanglementLayer {
409 connectivity: "full".to_string(),
410 },
411 QNNLayerType::VariationalLayer { num_params: 12 },
412 QNNLayerType::EntanglementLayer {
413 connectivity: "circular".to_string(),
414 },
415 QNNLayerType::MeasurementLayer {
416 measurement_basis: "Pauli-Z".to_string(),
417 },
418 ],
419 num_qubits: 6,
420 metrics: ArchitectureMetrics {
421 accuracy: Some(0.85),
422 loss: Some(0.2),
423 circuit_depth: 8,
424 parameter_count: 24,
425 training_time: Some(45.0),
426 memory_usage: Some(2048),
427 hardware_efficiency: Some(0.4),
428 },
429 properties: ArchitectureProperties {
430 expressivity: Some(0.8),
431 entanglement_capability: Some(0.9),
432 gradient_variance: Some(0.3),
433 barren_plateau_score: Some(0.7),
434 noise_resilience: Some(0.3),
435 },
436 },
437 ArchitectureCandidate {
439 id: "balanced".to_string(),
440 layers: vec![
441 QNNLayerType::EncodingLayer { num_features: 4 },
442 QNNLayerType::VariationalLayer { num_params: 8 },
443 QNNLayerType::EntanglementLayer {
444 connectivity: "circular".to_string(),
445 },
446 QNNLayerType::VariationalLayer { num_params: 8 },
447 QNNLayerType::MeasurementLayer {
448 measurement_basis: "computational".to_string(),
449 },
450 ],
451 num_qubits: 4,
452 metrics: ArchitectureMetrics {
453 accuracy: Some(0.78),
454 loss: Some(0.28),
455 circuit_depth: 5,
456 parameter_count: 16,
457 training_time: Some(25.0),
458 memory_usage: Some(1024),
459 hardware_efficiency: Some(0.65),
460 },
461 properties: ArchitectureProperties {
462 expressivity: Some(0.6),
463 entanglement_capability: Some(0.5),
464 gradient_variance: Some(0.15),
465 barren_plateau_score: Some(0.4),
466 noise_resilience: Some(0.6),
467 },
468 },
469 ]
470}